Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

18 Janelia Publications

Showing 11-18 of 18 results
Your Criteria:
    04/10/18 | Dissociable structural and functional hippocampal outputs via distinct subiculum cell classes.
    Cembrowski MS, Phillips MG, DiLisio SF, Shields BC, Winnubst J, Chandrashekar J, Bas E, Spruston N
    Cell. 2018 Apr 10;173(5):1280-92. doi: 10.1016/j.cell.2018.03.031

    The mammalian hippocampus, comprised of serially connected subfields, participates in diverse behavioral and cognitive functions. It has been postulated that parallel circuitry embedded within hippocampal subfields may underlie such functional diversity. We sought to identify, delineate, and manipulate this putatively parallel architecture in the dorsal subiculum, the primary output subfield of the dorsal hippocampus. Population and single-cell RNA-seq revealed that the subiculum can be divided into two spatially adjacent subregions associated with prominent differences in pyramidal cell gene expression. Pyramidal cells occupying these two regions differed in their long-range inputs, local wiring, projection targets, and electrophysiological properties. Leveraging gene-expression differences across these regions, we use genetically restricted neuronal silencing to show that these regions differentially contribute to spatial working memory. This work provides a coherent molecular-, cellular-, circuit-, and behavioral-level demonstration that the hippocampus embeds structurally and functionally dissociable streams within its serial architecture.

    View Publication Page
    12/31/17 | A topographic axis of transcriptional identity in thalamus.
    Phillips JW, Schulman A, Hara E, Liu C, Shields BC, Korff W, Lemire A, Dudman JT, Nelson SB, Hantman AW
    bioRxiv. 2017 Dec 31:241315. doi: 10.1101/241315

    A fundamental goal in neuroscience is to uncover common principles by which different modalities of information are processed. In the mammalian brain, thalamus acts as the essential hub for forebrain circuits handling inputs from sensory, motor, limbic, and cognitive pathways. Whether thalamus imposes common transformations on each of these modalities is unknown. Molecular characterization offers a principled approach to revealing the organization of thalamus. Using near-comprehensive and projection-specific transcriptomic sequencing, we found that almost all thalamic nuclei fit into one of three profiles. These profiles lie on a single axis of genetic variance which is aligned with the mediolateral spatial axis of thalamus. Genes defining this axis of variance include receptors and ion channels, providing a systematic diversification of input/output transformations across the topography of thalamus. Single cell transcriptional profiling revealed graded heterogeneity within individual thalamic nuclei, demonstrating that a spectrum of cell types and potentially diverse input/output transforms exist within a given thalamic nucleus. Together, our data argue for an archetypal organization of pathways serving diverse input modalities, and provides a comprehensive organizational scheme for thalamus.

    View Publication Page
    04/07/17 | Deconstructing behavioral neuropharmacology with cellular specificity.
    Shields BC, Kahuno E, Kim C, Apostolides PF, Brown J, Lindo S, Mensh BD, Dudman JT, Lavis LD, Tadross MR
    Science (New York, N.Y.). 2017 Apr 07;356(6333):. doi: 10.1126/science.aaj2161

    Behavior has molecular, cellular, and circuit determinants. However, because many proteins are broadly expressed, their acute manipulation within defined cells has been difficult. Here, we combined the speed and molecular specificity of pharmacology with the cell type specificity of genetic tools. DART (drugs acutely restricted by tethering) is a technique that rapidly localizes drugs to the surface of defined cells, without prior modification of the native target. We first developed an AMPAR antagonist DART, with validation in cultured neuronal assays, in slices of mouse dorsal striatum, and in behaving mice. In parkinsonian animals, motor deficits were causally attributed to AMPARs in indirect spiny projection neurons (iSPNs) and to excess phasic firing of tonically active interneurons (TANs). Together, iSPNs and TANs (i.e., D2 cells) drove akinesia, whereas movement execution deficits reflected the ratio of AMPARs in D2 versus D1 cells. Finally, we designed a muscarinic antagonist DART in one iteration, demonstrating applicability of the method to diverse targets.

    View Publication Page
    10/19/16 | A designer AAV variant permits efficient retrograde access to projection neurons.
    Tervo DG, Hwang B, Viswanathan S, Gaj T, Lavzin M, Ritola KD, Lindo S, Michael S, Kuleshova E, Ojala D, Huang C, Gerfen CR, Schiller J, Dudman JT, Hantman AW, Looger LL, Schaffer DV, Karpova AY
    Neuron. 2016 Oct 19;92(2):372-82. doi: 10.1016/j.neuron.2016.09.021

    Efficient retrograde access to projection neurons for the delivery of sensors and effectors constitutes an important and enabling capability for neural circuit dissection. Such an approach would also be useful for gene therapy, including the treatment of neurodegenerative disorders characterized by pathological spread through functionally connected and highly distributed networks. Viral vectors, in particular, are powerful gene delivery vehicles for the nervous system, but all available tools suffer from inefficient retrograde transport or limited clinical potential. To address this need, we applied in vivo directed evolution to engineer potent retrograde functionality into the capsid of adeno-associated virus (AAV), a vector that has shown promise in neuroscience research and the clinic. A newly evolved variant, rAAV2-retro, permits robust retrograde access to projection neurons with efficiency comparable to classical synthetic retrograde tracers and enables sufficient sensor/effector expression for functional circuit interrogation and in vivo genome editing in targeted neuronal populations. VIDEO ABSTRACT.

    View Publication Page
    05/24/16 | Design and synthesis of a calcium-sensitive photocage.
    Heckman LM, Grimm JB, Schreiter ER, Kim C, Verdecia MA, Shields BC, Lavis LD
    Angewandte Chemie (International ed. in English). 2016 May 24:. doi: 10.1002/anie.201602941

    Photolabile protecting groups (or "photocages") enable precise spatiotemporal control of chemical functionality and facilitate advanced biological experiments. Extant photocages exhibit a simple input-output relationship, however, where application of light elicits a photochemical reaction irrespective of the environment. Herein, we refine and extend the concept of photolabile groups, synthesizing the first Ca(2+) -sensitive photocage. This system functions as a chemical coincidence detector, releasing small molecules only in the presence of both light and elevated [Ca(2+) ]. Caging a fluorophore with this ion-sensitive moiety yields an "ion integrator" that permanently marks cells undergoing high Ca(2+) flux during an illumination-defined time period. Our general design concept demonstrates a new class of light-sensitive material for cellular imaging, sensing, and targeted molecular delivery.

    View Publication Page
    04/26/16 | Hipposeq: a comprehensive RNA-seq database of gene expression in hippocampal principal neurons.
    Cembrowski MS, Wang L, Sugino K, Shields BC, Spruston N
    eLife. 2016;5:. doi: 10.7554/eLife.14997

    Clarifying gene expression in narrowly defined neuronal populations can provide insight into cellular identity, computation, and functionality. Here, we used next-generation RNA sequencing (RNA-seq) to produce a quantitative, whole genome characterization of gene expression for the major excitatory neuronal classes of the hippocampus; namely, granule cells and mossy cells of the dentate gyrus, and pyramidal cells of areas CA3, CA2, and CA1. Moreover, for the canonical cell classes of the trisynaptic loop, we profiled transcriptomes at both dorsal and ventral poles, producing a cell-class- and region-specific transcriptional description for these populations. This dataset clarifies the transcriptional properties and identities of lesser-known cell classes, and moreover reveals unexpected variation in the trisynaptic loop across the dorsal-ventral axis. We have created a public resource, Hipposeq (http://hipposeq.janelia.org), which provides analysis and visualization of these data and will act as a roadmap relating molecules to cells, circuits, and computation in the hippocampus.

    View Publication Page
    03/24/16 | Sensitive red protein calcium indicators for imaging neural activity.
    Dana H, Mohar B, Sun Y, Narayan S, Gordus A, Hasseman JP, Tsegaye G, Holt GT, Hu A, Walpita D, Patel R, Macklin JJ, Bargmann CI, Ahrens MB, Schreiter ER, Jayaraman V, Looger LL, Svoboda K, Kim DS
    eLife. 2016 Mar 24;5:. doi: 10.7554/eLife.12727

    Genetically encoded calcium indicators (GECIs) allow measurement of activity in large populations of neurons and in small neuronal compartments, over times of milliseconds to months. Although GFP-based GECIs are widely used for in vivo neurophysiology, GECIs with red-shifted excitation and emission spectra have advantages for in vivo imaging because of reduced scattering and absorption in tissue, and a consequent reduction in phototoxicity. However, current red GECIs are inferior to the state-of-the-art GFP-based GCaMP6 indicators for detecting and quantifying neural activity. Here we present improved red GECIs based on mRuby (jRCaMP1a, b) and mApple (jRGECO1a), with sensitivity comparable to GCaMP6. We characterized the performance of the new red GECIs in cultured neurons and in mouse, Drosophila, zebrafish and C. elegans in vivo. Red GECIs facilitate deep-tissue imaging, dual-color imaging together with GFP-based reporters, and the use of optogenetics in combination with calcium imaging.

    View Publication Page
    01/13/16 | Spatial gene-expression gradients underlie prominent heterogeneity of CA1 pyramidal neurons.
    Cembrowski MS, Bachman JL, Wang L, Sugino K, Shields BC, Spruston N
    Neuron. 2016 Jan 13:. doi: 10.1016/j.neuron.2015.12.013

    Tissue and organ function has been conventionally understood in terms of the interactions among discrete and homogeneous cell types. This approach has proven difficult in neuroscience due to the marked diversity across different neuron classes, but it may be further hampered by prominent within-class variability. Here, we considered a well-defined canonical neuronal population-hippocampal CA1 pyramidal cells (CA1 PCs)-and systematically examined the extent and spatial rules of transcriptional heterogeneity. Using next-generation RNA sequencing, we identified striking variability in CA1 PCs, such that the differences within CA1 along the dorsal-ventral axis rivaled differences across distinct pyramidal neuron classes. This variability emerged from a spectrum of continuous gene-expression gradients, producing a transcriptional profile consistent with a multifarious continuum of cells. This work reveals an unexpected amount of variability within a canonical and narrowly defined neuronal population and suggests that continuous, within-class heterogeneity may be an important feature of neural circuits.

    View Publication Page