Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2 Janelia Publications

Showing 1-2 of 2 results
Your Criteria:
    11/16/16 | The genome of the crustacean Parhyale hawaiensis: a model for animal development, regeneration, immunity and lignocellulose digestion.
    Kao D, Lai AG, Stamataki E, Rosic S, Konstantinides N, Jarvis E, Di Donfrancesco A, Pouchkina-Stantcheva N, Semon M, Grillo M, Bruce H, Kumar S, Siwanowicz I, Le A, Lemire A, Extavour C, Browne W, Wolff C, Averof M, et al
    eLife. 2016 Nov 16;5:e20062. doi: 10.7554/eLife.20062

    Parhyale hawaiensis is a blossoming model system for studies of developmental mechanisms and more recently adult regeneration. We have sequenced the genome allowing annotation of all key signaling pathways, small non-coding RNAs and transcription factors that will enhance ongoing functional studies. Parhayle is a member of the Malacostraca, which includes crustacean food crop species. We analysed the immunity related genes of Parhyale as an important comparative system for these species, where immunity related aquaculture problems have increased as farming has intensified. We also find that Parhyale and other species within Multicrustacea contain the enzyme sets necessary to perform lignocellulose digestion (wood eating), suggesting this ability may predate the diversification of this lineage. Our data provide an essential resource for further development of the Parhyale model. The first Malacostracan genome sequence will underpin ongoing comparative work in important food crop species and research investigating lignocellulose as energy source.

    Publication first appeared in BioRxiv on August 2, 2016. http://dx.doi.org/10.1101/065789

    View Publication Page
    04/26/16 | Hipposeq: a comprehensive RNA-seq database of gene expression in hippocampal principal neurons.
    Cembrowski MS, Wang L, Sugino K, Shields BC, Spruston N
    eLife. 2016;5:. doi: 10.7554/eLife.14997

    Clarifying gene expression in narrowly defined neuronal populations can provide insight into cellular identity, computation, and functionality. Here, we used next-generation RNA sequencing (RNA-seq) to produce a quantitative, whole genome characterization of gene expression for the major excitatory neuronal classes of the hippocampus; namely, granule cells and mossy cells of the dentate gyrus, and pyramidal cells of areas CA3, CA2, and CA1. Moreover, for the canonical cell classes of the trisynaptic loop, we profiled transcriptomes at both dorsal and ventral poles, producing a cell-class- and region-specific transcriptional description for these populations. This dataset clarifies the transcriptional properties and identities of lesser-known cell classes, and moreover reveals unexpected variation in the trisynaptic loop across the dorsal-ventral axis. We have created a public resource, Hipposeq (http://hipposeq.janelia.org), which provides analysis and visualization of these data and will act as a roadmap relating molecules to cells, circuits, and computation in the hippocampus.

    View Publication Page