Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

general_search_page-panel_pane_1 | views_panes

3 Janelia Publications

Showing 1-3 of 3 results
Your Criteria:
    01/20/23 | Multimodal mapping of cell types and projections in the central nucleus of the amygdala
    Yuhan Wang , Sabine Krabbe , Mark Eddison , Fredrick E. Henry , Greg Fleishman , Andrew L. Lemire , Lihua Wang , Wyatt Korff , Paul W. Tillberg , Andreas Lüthi , Scott M. Sternson
    eLife. 2023 Jan 20:. doi: 10.7554/eLife.84262

    The central nucleus of the amygdala (CEA) is a brain region that integrates external and internal sensory information and executes innate and adaptive behaviors through distinct output pathways. Despite its complex functions, the diversity of molecularly defined neuronal types in the CEA and their contributions to major axonal projection targets have not been examined systematically. Here, we performed single-cell RNA-sequencing (scRNA-Seq) to classify molecularly defined cell types in the CEA and identified marker-genes to map the location of these neuronal types using expansion assisted iterative fluorescence in situ hybridization (EASI-FISH). We developed new methods to integrate EASI-FISH with 5-plex retrograde axonal labeling to determine the spatial, morphological, and connectivity properties of ∼30,000 molecularly defined CEA neurons. Our study revealed spatio-molecular organization of the CEA, with medial and lateral CEA associated with distinct cell families. We also found a long-range axon projection network from the CEA, where target regions receive inputs from multiple molecularly defined cell types. Axon collateralization was found primarily among projections to hindbrain targets, which are distinct from forebrain projections. This resource reports marker-gene combinations for molecularly defined cell types and axon-projection types, which will be useful for selective interrogation of these neuronal populations to study their contributions to the diverse functions of the CEA.

    View Publication Page
    11/13/22 | Brain-wide measurement of protein turnover with high spatial and temporal resolution
    Boaz Mohar , Jonathan B. Grimm , Ronak Patel , Timothy A. Brown , Paul Tillberg , Luke D. Lavis , Nelson Spruston , Karel Svoboda
    bioRxiv. 2022 Nov 13:. doi: 10.1101/2022.11.12.516226

    Cells regulate function by synthesizing and degrading proteins. This turnover ranges from minutes to weeks, as it varies across proteins, cellular compartments, cell types, and tissues. Current methods for tracking protein turnover lack the spatial and temporal resolution needed to investigate these processes, especially in the intact brain, which presents unique challenges. We describe a pulse-chase method (DELTA) for measuring protein turnover with high spatial and temporal resolution throughout the body, including the brain. DELTA relies on rapid covalent capture by HaloTag of fluorophores that were optimized for bioavailability in vivo. The nuclear protein MeCP2 showed brain region- and cell type-specific turnover. The synaptic protein PSD95 was destabilized in specific brain regions by behavioral enrichment. A novel variant of expansion microscopy further facilitated turnover measurements at individual synapses. DELTA enables studies of adaptive and maladaptive plasticity in brain-wide neural circuits.

    View Publication Page
    03/08/21 | Expansion-Assisted Iterative-FISH defines lateral hypothalamus spatio-molecular organization
    Yuhan Wang , Mark Eddison , Greg Fleishman , Martin Weigert , Shengjin Xu , Frederick E. Henry , Tim Wang , Andrew L. Lemire , Uwe Schmidt , Hui Yang , Konrad Rokicki , Cristian Goina , Karel Svoboda , Eugene W. Myers , Stephan Saalfeld , Wyatt Korff , Scott M. Sternson , Paul W. Tillberg
    bioRxiv. 2021 Mar 8:. doi: 10.1101/2021.03.08.434304

    Determining the spatial organization and morphological characteristics of molecularly defined cell types is a major bottleneck for characterizing the architecture underpinning brain function. We developed Expansion-Assisted Iterative Fluorescence In Situ Hybridization (EASI-FISH) to survey gene expression in brain tissue, as well as a turnkey computational pipeline to rapidly process large EASI-FISH image datasets. EASI-FISH was optimized for thick brain sections (300 µm) to facilitate reconstruction of spatio-molecular domains that generalize across brains. Using the EASI-FISH pipeline, we investigated the spatial distribution of dozens of molecularly defined cell types in the lateral hypothalamic area (LHA), a brain region with poorly defined anatomical organization. Mapping cell types in the LHA revealed nine novel spatially and molecularly defined subregions. EASI-FISH also facilitates iterative re-analysis of scRNA-Seq datasets to determine marker-genes that further dissociated spatial and morphological heterogeneity. The EASI-FISH pipeline democratizes mapping molecularly defined cell types, enabling discoveries about brain organization.

    View Publication Page