Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

16 Janelia Publications

Showing 1-10 of 16 results
Your Criteria:
    03/30/15 | Myosin 18A coassembles with nonmuscle myosin 2 to form mixed bipolar filaments.
    Billington N, Beach JR, Heissler SM, Remmert K, Guzik-Lendrum S, Nagy A, Takagi Y, Shao L, Li D, Yang Y, Zhang Y, Barzik M, Betzig E, Hammer JA, Sellers JR
    Current Biology. 2015 Mar 30;25(7):942-8. doi: 10.1016/j.cub.2015.02.012

    Class-18 myosins are most closely related to conventional class-2 nonmuscle myosins (NM2). Surprisingly, the purified head domains of Drosophila, mouse, and human myosin 18A (M18A) lack actin-activated ATPase activity and the ability to translocate actin filaments, suggesting that the functions of M18A in vivo do not depend on intrinsic motor activity. M18A has the longest coiled coil of any myosin outside of the class-2 myosins, suggesting that it might form bipolar filaments similar to conventional myosins. To address this possibility, we expressed and purified full-length mouse M18A using the baculovirus/Sf9 system. M18A did not form large bipolar filaments under any of the conditions tested. Instead, M18A formed an ∼65-nm-long bipolar structure with two heads at each end. Importantly, when NM2 was polymerized in the presence of M18A, the two myosins formed mixed bipolar filaments, as evidenced by cosedimentation, electron microscopy, and single-molecule imaging. Moreover, super-resolution imaging of NM2 and M18A using fluorescently tagged proteins and immunostaining of endogenous proteins showed that NM2 and M18A are present together within individual filaments inside living cells. Together, our in vitro and live-cell imaging data argue strongly that M18A coassembles with NM2 into mixed bipolar filaments. M18A could regulate the biophysical properties of these filaments and, by virtue of its extra N- and C-terminal domains, determine the localization and/or molecular interactions of the filaments. Given the numerous, fundamental cellular and developmental roles attributed to NM2, our results have far-reaching biological implications.

    View Publication Page
    Cui Lab
    03/23/15 | Numerical study of multi-conjugate large area wavefront correction for deep tissue microscopy.
    Wu T, Cui M
    Optics Express. 2015 Mar 23;23(6):7463-70. doi: 10.1364/OE.23.007463

    Wavefront distortion fundamentally limits the achievable imaging depth and quality in thick tissue. Wavefront correction can help restore the diffraction limited focus albeit with a small field of view (FOV), which limits its imaging applications. In this work, we numerically investigate whether the multi-conjugate configuration, originally developed for astronomical adaptive optics, may increase the correction FOV in random turbid media. The results show that the multi-conjugate configuration can significantly improve the correction area compared to the widely adopted pupil plane correction. Even in the simple case of single-conjugation, it still outperforms the pupil plane correction. This study provides a guideline for designing the optimal wavefront correction system in deep tissue imaging.

    View Publication Page
    03/20/15 | Translation. An RNA biosensor for imaging the first round of translation from single cells to living animals.
    Halstead JM, Lionnet T, Wilbertz JH, Wippich F, Ephrussi A, Singer RH, Chao JA
    Science. 2015 Mar 20;347(6228):1367-671. doi: 10.1126/science.aaa3380

    Analysis of single molecules in living cells has provided quantitative insights into the kinetics of fundamental biological processes; however, the dynamics of messenger RNA (mRNA) translation have yet to be addressed. We have developed a fluorescence microscopy technique that reports on the first translation events of individual mRNA molecules. This allowed us to examine the spatiotemporal regulation of translation during normal growth and stress and during Drosophila oocyte development. We have shown that mRNAs are not translated in the nucleus but translate within minutes after export, that sequestration within P-bodies regulates translation, and that oskar mRNA is not translated until it reaches the posterior pole of the oocyte. This methodology provides a framework for studying initiation of protein synthesis on single mRNAs in living cells.

    View Publication Page
    03/19/15 | Neuroscience: hot on the trail of temperature processing.
    Florence TJ, Reiser MB
    Nature. 2015 Mar 19;519(7543):296-7. doi: 10.1038/nature14209
    03/17/15 | Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals.
    Uervirojnangkoorn M, Zeldin OB, Lyubimov AY, Hattne J, Brewster AS, Sauter NK, Brunger AT, Weis WI
    eLife. 2015 Mar 17;4:. doi: 10.7554/eLife.05421

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as the resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.

    View Publication Page
    03/16/15 | Age-dependent changes in intrinsic neuronal excitability in subiculum after status epilepticus.
    Chung S, Spruston N, Koh S
    PLoS One. 2015 Mar 16;10(3):e0119411. doi: 10.1371/journal.pone.0119411

    Kainic acid-induced status epilepticus (KA-SE) in mature rats results in the development of spontaneous recurrent seizures and a pattern of cell death resembling hippocampal sclerosis in patients with temporal lobe epilepsy. In contrast, KA-SE in young animals before postnatal day (P) 18 is less likely to cause cell death or epilepsy. To investigate whether changes in neuronal excitability occur in the subiculum after KA-SE, we examined the age-dependent effects of SE on the bursting neurons of subiculum, the major output region of the hippocampus. Patch-clamp recordings were used to monitor bursting in pyramidal neurons in the subiculum of rat hippocampal slices. Neurons were studied either one or 2-3 weeks following injection of KA or saline (control) in immature (P15) or more mature (P30) rats, which differ in their sensitivity to KA as well as the long-term sequelae of the KA-SE. A significantly greater proportion of subicular pyramidal neurons from P15 rats were strong-bursting neurons and showed increased frequency-dependent bursting compared to P30 animals. Frequency-dependent burst firing was enhanced in P30, but not in P15 rats following KA-SE. The enhancement of bursting induced by KA-SE in more mature rats suggests that the frequency-dependent limitation of repetitive burst firing, which normally occurs in the subiculum, is compromised following SE. These changes could facilitate the initiation of spontaneous recurrent seizures or their spread from the hippocampus to other parts of the brain.

    View Publication Page
    03/16/15 | Genetic architecture and functional characterization of genes underlying the rapid diversification of male external genitalia between Drosophila simulans and Drosophila mauritiana.
    Tanaka KM, Hopfen C, Herbert MR, Schlötterer C, Stern DL, Masly JP, McGregor AP, Nunes MD
    Genetics. 2015 Mar 16:. doi: 10.1534/genetics.114.174045

    Male sexual characters are often among the first traits to diverge between closely related species and identifying the genetic basis of such changes can contribute to our understanding of their evolutionary history. However, little is known about the genetic architecture or the specific genes underlying the evolution of male genitalia. The morphology of the claspers, posterior lobes and anal plates exhibit striking differences between Drosophila mauritiana and Drosophila simulans. Using QTL and introgression-based high-resolution mapping, we identified several small regions on chromosome arms 3L and 3R that contribute to differences in these traits. However, we found that the loci underlying the evolution of clasper differences between these two species are independent from those that contribute to posterior lobe and anal plate divergence. Furthermore, while most of the loci affect each trait in the same direction and act additively, we also found evidence for epistasis between loci for clasper bristle number. In addition, we conducted an RNAi screen in D. melanogaster to investigate if positional and expression candidate genes located on chromosome 3L, are also involved in genital development. We found that six of these genes, including components of Wnt signaling and male-specific lethal 3 (msl3), regulate the development of genital traits consistent with the effects of the introgressed regions where they are located and that thus represent promising candidate genes for the evolution these traits.

    View Publication Page
    03/12/15 | Numb is not a critical regulator of Notch-mediated cell fate decisions in the developing chick inner ear.
    Eddison M, Weber SJ, Ariza-McNaughton L, Lewis J, Daudet N
    Frontiers in Cellular Neuroscience. 2015;9:74. doi: 10.3389/fncel.2015.00074

    The Notch signaling pathway controls differentiation of hair cells and supporting cells in the vertebrate inner ear. Here, we have investigated whether Numb, a known regulator of Notch activity in Drosophila, is involved in this process in the embryonic chick. The chicken homolog of Numb is expressed throughout the otocyst at early stages of development and is concentrated at the basal pole of the cells. It is asymmetrically allocated at some cell divisions, as in Drosophila, suggesting that it could act as a determinant inherited by one of the two daughter cells and favoring adoption of a hair-cell fate. To test the implication of Numb in hair cell fate decisions and the regulation of Notch signaling, we used different methods to overexpress Numb at different stages of inner ear development. We found that sustained or late Numb overexpression does not promote hair cell differentiation, and Numb does not prevent the reception of Notch signaling. Surprisingly, none of the Numb-overexpressing cells differentiated into hair cells, suggesting that high levels of Numb protein could interfere with intracellular processes essential for hair cell survival. However, when Numb was overexpressed early and more transiently during ear development, no effect on hair cell formation was seen. These results suggest that in the inner ear at least, Numb does not significantly repress Notch activity and that its asymmetric distribution in dividing precursor cells does not govern the choice between hair cell and supporting cell fates.

    View Publication Page
    03/11/15 | Dual-channel circuit mapping reveals sensorimotor convergence in the primary motor cortex.
    Hooks BM, Lin JY, Guo C, Svoboda K
    The Journal of Neuroscience. 2015 Mar 11;35(10):4418-26. doi: 10.1523/JNEUROSCI.3741-14.2015

    Cortical cells integrate synaptic input from multiple sources, but how these different inputs are distributed across individual neurons is largely unknown. Differences in input might account for diverse responses in neighboring neurons during behavior. We present a strategy for comparing the strengths of multiple types of input onto the same neuron. We developed methods for independent dual-channel photostimulation of synaptic inputs using ChR2 together with ReaChR, a red-shifted channelrhodopsin. We used dual-channel photostimulation to probe convergence of sensory information in the mouse primary motor cortex. Input from somatosensory cortex and thalamus converges in individual neurons. Similarly, inputs from distinct somatotopic regions of the somatosensory cortex are integrated at the level of single motor cortex neurons. We next developed a ReaChR transgenic mouse under the control of both Flp- and Cre-recombinases that is an effective tool for circuit mapping. Our approach to dual-channel photostimulation enables quantitative comparison of the strengths of multiple pathways across all length scales of the brain.

    View Publication Page
    03/10/15 | Visualization and neuronal cell targeting during electrophysiological recordings facilitated by quantum dots.
    Field LD, Andrasfalvy BK, Galiñanes GL, Huber D, Barbic M, Macklin JJ, Susumu K, Delehanty JB, Huston AL, Makara JK, Medintz IL
    Proceedings of SPIE. 2015 Mar 10;9305:9305Y. doi: 10.1117/12.2076934

    The simultaneous visualization, identification and targeting of neurons during patch clamp-mediated electrophysiological recordings is a basic technique in neuroscience, yet it is often complicated by the inability to visualize the pipette tip, particularly in deep brain tissue. Here we demonstrate a novel approach in which fluorescent quantum dot probes are used to coat pipettes prior to their use. The strong two-photon absorption cross sections of the quantum dots afford robust contrast at significantly deeper penetration depths than current methods allow. We demonstrate the utility of this technique in multiple recording formats both in vitro and in vivo where imaging of the pipettes is achieved at remarkable depths (up to 800 microns). Notably, minimal perturbation of cellular physiology is observed over the hours-long time course of neuronal recordings. We discuss our results within the context of the role that quantum dot nanoprobes may play in understanding neuronal cell physiology.

    View Publication Page