Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block

Publication Date

general_search_page-panel_pane_1 | views_panes

178 Janelia Publications

Showing 61-70 of 178 results
Your Criteria:
    09/09/20 | Cell-type specific outcome representation in primary motor cortex.
    Lavzin M, Levy S, Benisty H, Dubin U, Brosh Z, Aeed F, Mensh BD, Schiller Y, Meir R, Barak O, Talmon R, Hantman AW, Schiller J
    Neuron. 2020 Sep 9;107(5):954-71. doi: 10.1016/j.neuron.2020.06.006

    Adaptive movements are critical to animal survival. To guide future actions, the brain monitors different outcomes, including achievement of movement and appetitive goals. The nature of outcome signals and their neuronal and network realization in motor cortex (M1), which commands the performance of skilled movements, is largely unknown. Using a dexterity task, calcium imaging, optogenetic perturbations, and behavioral manipulations, we studied outcome signals in murine M1. We find two populations of layer 2-3 neurons, “success”- and “failure” related neurons that develop with training and report end-result of trials. In these neurons, prolonged responses were recorded after success or failure trials, independent of reward and kinematics. In contrast, the initial state of layer-5 pyramidal tract neurons contains a memory trace of the previous trial’s outcome. Inter-trial cortical activity was needed to learn new task requirements. These M1 reflective layer-specific performance outcome signals, can support reinforcement motor learning of skilled behavior.

    View Publication Page
    09/07/20 | A connectome and analysis of the adult Drosophila central brain.
    Scheffer LK, Xu CS, Januszewski M, Lu Z, Takemura S, Hayworth KJ, Huang GB, Shinomiya K, Maitlin-Shepard J, Berg S, Clements J, Hubbard PM, Katz WT, Umayam L, Zhao T, Ackerman D, Blakely T, Bogovic J, Dolafi T, Kainmueller D, Kawase T, Khairy KA, Leavitt L, Li PH, Lindsey L, Neubarth N, Olbris DJ, Otsuna H, Trautman ET, Ito M, Bates AS, Goldammer J, Wolff T, Svirskas R, Schlegel P, Neace E, Knecht CJ, Alvarado CX, Bailey DA, Ballinger S, Borycz JA, Canino BS, Cheatham N, Cook M, Dreher M, Duclos O, Eubanks B, Fairbanks K, Finley S, Forknall N, Francis A, Hopkins GP, Joyce EM, Kim S, Kirk NA, Kovalyak J, Lauchie SA, Lohff A, Maldonado C, Manley EA, McLin S, Mooney C, Ndama M, Ogundeyi O, Okeoma N, Ordish C, Padilla N, Patrick CM, Paterson T, Phillips EE, Phillips EM, Rampally N, Ribeiro C, Robertson MK, Rymer JT, Ryan SM, Sammons M, Scott AK, Scott AL, Shinomiya A, Smith C, Smith K, Smith NL, Sobeski MA, Suleiman A, Swift J, Takemura S, Talebi I, Tarnogorska D, Tenshaw E, Tokhi T, Walsh JJ, Yang T, Horne JA, Li F, Parekh R, Rivlin PK, Jayaraman V, Costa M, Jefferis GS, Ito K, Saalfeld S, George R, Meinertzhagen IA, Rubin GM, Hess HF, Jain V, Plaza SM
    Elife. 2020 Sep 07;9:. doi: 10.7554/eLife.57443

    The neural circuits responsible for animal behavior remain largely unknown. We summarize new methods and present the circuitry of a large fraction of the brain of the fruit fly . Improved methods include new procedures to prepare, image, align, segment, find synapses in, and proofread such large data sets. We define cell types, refine computational compartments, and provide an exhaustive atlas of cell examples and types, many of them novel. We provide detailed circuits consisting of neurons and their chemical synapses for most of the central brain. We make the data public and simplify access, reducing the effort needed to answer circuit questions, and provide procedures linking the neurons defined by our analysis with genetic reagents. Biologically, we examine distributions of connection strengths, neural motifs on different scales, electrical consequences of compartmentalization, and evidence that maximizing packing density is an important criterion in the evolution of the fly's brain.

    View Publication Page
    09/02/20 | Neurotransmitter Classification from Electron Microscopy Images at Synaptic Sites in Drosophila
    Eckstein N, Bates AS, Du M, Hartenstein V, Jefferis GS, Funke J
    bioRxiv. 2020 Sep 2:. doi: 10.1101/2020.06.12.148775

    High-resolution electron microscopy (EM) of nervous systems enables the reconstruction of neural circuits at the level of individual synaptic connections. However, for invertebrates, such as Drosophila melanogaster, it has so far been unclear whether the phenotype of neurons or synapses alone is sufficient to predict specific functional properties such as neurotransmitter identity. Here, we show that in Drosophila melanogaster artificial convolutional neural networks can confidently predict the type of neurotransmitter released at a synaptic site from EM images alone. The network successfully discriminates between six types of neurotransmitters (GABA, glutamate, acetylcholine, serotonin, dopamine, and octopamine) with an average accuracy of 87% for individual synapses and 94% for entire neurons, assuming each neuron expresses only one neurotransmitter. This result is surprising as there are often no obvious cues in the EM images that human observers can use to predict neurotransmitter identity. We apply the proposed method to quantify whether, similar to the ventral nervous system (VNS), all hemilineages in the Drosophila melanogaster brain express only one fast acting transmitter within their neurons. To test this principle, we predict the neurotransmitter identity of all identified synapses in 89 hemilineages in the Drosophila melanogaster adult brain. While the majority of our predictions show homogeneity of fast-acting neurotransmitter identity within a single hemilineage, we identify a set of hemilineages that express two fast-acting neurotransmitters with high statistical significance. As a result, our predictions are inconsistent with the hypothesis that all neurons within a hemilineage express the same fast-acting neurotransmitter in the brain of Drosophila melanogaster.

    View Publication Page
    09/01/20 | Actin chromobody imaging reveals sub-organellar actin dynamics.
    Schiavon CR, Zhang T, Zhao B, Moore AS, Wales P, Andrade LR, Wu M, Sung T, Dayn Y, Feng JW, Quintero OA, Shadel GS, Grosse R, Manor U
    Nature Methods. 2020 Sep 01;17(9):917-21. doi: 10.1038/s41592-020-0926-5

    The actin cytoskeleton plays multiple critical roles in cells, from cell migration to organelle dynamics. The small and transient actin structures regulating organelle dynamics are challenging to detect with fluorescence microscopy, making it difficult to determine whether actin filaments are directly associated with specific membranes. To address these limitations, we developed fluorescent-protein-tagged actin nanobodies, termed 'actin chromobodies' (ACs), targeted to organelle membranes to enable high-resolution imaging of sub-organellar actin dynamics.

    View Publication Page
    09/01/20 | Extensive and spatially variable within-cell-type heterogeneity across the basolateral amygdala.
    O'Leary TP, Sullivan KE, Wang L, Clements J, Lemire AL, Cembrowski MS
    eLife. 2020 Sep 01;9:. doi: 10.7554/eLife.59003

    The basolateral amygdala complex (BLA), extensively connected with both local amygdalar nuclei as well as long-range circuits, is involved in a diverse array of functional roles. Understanding the mechanisms of such functional diversity will be greatly informed by understanding the cell-type-specific landscape of the BLA. Here, beginning with single-cell RNA sequencing, we identified both discrete and graded continuous gene-expression differences within the mouse BLA. Via in situ hybridization, we next mapped this discrete transcriptomic heterogeneity onto a sharp spatial border between the basal and lateral amygdala nuclei, and identified continuous spatial gene-expression gradients within each of these regions. These discrete and continuous spatial transformations of transcriptomic cell-type identity were recapitulated by local morphology as well as long-range connectivity. Thus, BLA excitatory neurons are a highly heterogenous collection of neurons that spatially covary in molecular, cellular, and circuit properties. This heterogeneity likely drives pronounced spatial variation in BLA computation and function.

    View Publication Page
    08/30/20 | Parvalbumin+ and Npas1+ Pallidal neurons have distinct circuit topology and function.
    Pamukcu A, Cui Q, Xenias HS, Berceau BL, Augustine EC, Fan I, Hantman AW, Lerner TN, Boca SM, Chan CS
    Journal of Neuroscience. 2020 Aug 30:
    08/27/20 | Cortical RORβ is required for layer 4 transcriptional identity and barrel integrity.
    Clark EA, Rutlin M, Capano L, Aviles S, Saadon JR, Taneja P, Zhang Q, Bullis JB, Lauer T, Myers E, Schulmann A, Forrest D, Nelson SB
    eLife. 2020 Aug 27;9:. doi: 10.7554/eLife.52370

    Retinoic Acid-Related Orphan Receptor Beta (RORβ) is a transcription factor (TF) and marker of layer 4 (L4) neurons, which are distinctive both in transcriptional identity and the ability to form aggregates such as barrels in rodent somatosensory cortex. However, the relationship between transcriptional identity and L4 cytoarchitecture is largely unknown. We find RORβ is required in the cortex for L4 aggregation into barrels and thalamocortical afferent (TCA) segregation. Interestingly, barrel organization also degrades with age in wildtype mice. Loss of RORβ delays excitatory input and disrupts gene expression and chromatin accessibility, with down-regulation of L4 and up-regulation of L5 genes, suggesting a disruption in cellular specification. Expression and binding site accessibility change for many other TFs, including closure of neurodevelopmental TF binding sites and increased expression and binding capacity of activity-regulated TFs. Lastly, a putative target of RORβ, , is down-regulated without RORβ, and knock-out alone disrupts TCA organization in adult barrels.

    View Publication Page
    08/20/20 | Rational design of bioavailable photosensitizers for manipulation and imaging of biological systems.
    Binns TC, Ayala AX, Grimm JB, Tkachuk AN, Castillon GA, Phan S, Zhang L, Brown TA, Liu Z, Adams SR, Ellisman MH, Koyama M, Lavis LD
    Cell Chemical Biology. 2020 Aug 20;27(8):1063-72. doi: 10.1016/j.chembiol.2020.07.001

    Light-mediated chemical reactions are powerful methods for manipulating and interrogating biological systems. Photosensitizers, compounds that generate reactive oxygen species upon excitation with light, can be utilized for numerous biological experiments, but the repertoire of bioavailable photosensitizers is limited. Here, we describe the synthesis, characterization, and utility of two photosensitizers based upon the widely used rhodamine scaffold and demonstrate their efficacy for chromophore-assisted light inactivation, cell ablation in culture and in vivo, and photopolymerization of diaminobenzidine for electron microscopy. These chemical tools will facilitate a broad range of applications spanning from targeted destruction of proteins to high-resolution imaging.

    View Publication Page
    08/17/20 | Complete connectomic reconstruction of olfactory projection neurons in the fly brain.
    Bates AS, Schlegel P, Roberts RJ, Drummond N, Tamimi IF, Turnbull R, Zhao X, Marin EC, Popovici PD, Dhawan S, Jamasb A, Javier A, Serratosa Capdevila L, Li F, Rubin GM, Waddell S, Bock DD, Costa M, Jefferis GS
    Current Biology. 2020 Aug 17;30(16):3183-99. doi: 10.1016/j.cub.2020.06.042

    Nervous systems contain sensory neurons, local neurons, projection neurons, and motor neurons. To understand how these building blocks form whole circuits, we must distil these broad classes into neuronal cell types and describe their network connectivity. Using an electron micrograph dataset for an entire Drosophila melanogaster brain, we reconstruct the first complete inventory of olfactory projections connecting the antennal lobe, the insect analog of the mammalian olfactory bulb, to higher-order brain regions in an adult animal brain. We then connect this inventory to extant data in the literature, providing synaptic-resolution "holotypes" both for heavily investigated and previously unknown cell types. Projection neurons are approximately twice as numerous as reported by light level studies; cell types are stereotyped, but not identical, in cell and synapse numbers between brain hemispheres. The lateral horn, the insect analog of the mammalian cortical amygdala, is the main target for this olfactory information and has been shown to guide innate behavior. Here, we find new connectivity motifs, including axo-axonic connectivity between projection neurons, feedback, and lateral inhibition of these axons by a large population of neurons, and the convergence of different inputs, including non-olfactory inputs and memory-related feedback onto third-order olfactory neurons. These features are less prominent in the mushroom body calyx, the insect analog of the mammalian piriform cortex and a center for associative memory. Our work provides a complete neuroanatomical platform for future studies of the adult Drosophila olfactory system.

    View Publication Page
    08/17/20 | Connectomics analysis reveals first-, second-, and third-order thermosensory and hygrosensory neurons in the adult Drosophila brain.
    Marin EC, Büld L, Theiss M, Sarkissian T, Roberts RJ, Turnbull R, Tamimi IF, Pleijzier MW, Laursen WJ, Drummond N, Schlegel P, Bates AS, Li F, Landgraf M, Costa M, Bock DD, Garrity PA, Jefferis GS
    Current Biology. 2020 Aug 17;30(16):3167-82. doi: 10.1016/j.cub.2020.06.028

    Animals exhibit innate and learned preferences for temperature and humidity-conditions critical for their survival and reproduction. Leveraging a whole-brain electron microscopy volume, we studied the adult Drosophila melanogaster circuitry associated with antennal thermo- and hygrosensory neurons. We have identified two new target glomeruli in the antennal lobe, in addition to the five known ones, and the ventroposterior projection neurons (VP PNs) that relay thermo- and hygrosensory information to higher brain centers, including the mushroom body and lateral horn, seats of learned and innate behavior. We present the first connectome of a thermo- and hygrosensory neuropil, the lateral accessory calyx (lACA), by reconstructing neurons downstream of heating- and cooling-responsive VP PNs. A few mushroom body-intrinsic neurons solely receive thermosensory input from the lACA, while most receive additional olfactory and thermo- and/or hygrosensory PN inputs. Furthermore, several classes of lACA-associated neurons form a local network with outputs to other brain neuropils, suggesting that the lACA serves as a hub for thermo- and hygrosensory circuitry. For example, DN1a neurons link thermosensory PNs in the lACA to the circadian clock via the accessory medulla. Finally, we survey strongly connected downstream partners of VP PNs across the protocerebrum; these include a descending neuron targeted by dry-responsive VP PNs, meaning that just two synapses might separate hygrosensory inputs from motor circuits. These data provide a comprehensive first- and second-order layer analysis of Drosophila thermo- and hygrosensory systems and an initial survey of third-order neurons that could directly modulate behavior.

    View Publication Page