Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2 Janelia Publications

Showing 1-2 of 2 results
Your Criteria:
    Gonen Lab
    03/19/19 | MicroED data collection with SerialEM.
    de la Cruz MJ, Martynowycz MW, Hattne J, Gonen T
    Ultramicroscopy. 2019 Mar 19;201:77-80. doi: 10.1016/j.ultramic.2019.03.009

    The cryoEM method Microcrystal Electron Diffraction (MicroED) involves transmission electron microscope (TEM) and electron detector working in synchrony to collect electron diffraction data by continuous rotation. We previously reported several protein, peptide, and small molecule structures by MicroED using manual control of the microscope and detector to collect data. Here we present a procedure to automate this process using a script developed for the popular open-source software package SerialEM. With this approach, SerialEM coordinates stage rotation, microscope operation, and camera functions for automated continuous-rotation MicroED data collection. Depending on crystal and substrate geometry, more than 300 datasets can be collected overnight in this way, facilitating high-throughput MicroED data collection for large-scale data analyses.

    View Publication Page
    Gonen Lab
    01/18/19 | Structural basis for substrate binding and specificity of a sodium-alanine symporter AgcS.
    Ma J, Lei H, Reyes FE, Sanchez-Martinez S, Sarhan MF, Hattne J, Gonen T
    Proceedings of the National Academy of Sciences of the United States of America. 2019 Jan 18;116(6):2086-90. doi: 10.1073/pnas.1806206116

    The amino acid, polyamine, and organocation (APC) superfamily is the second largest superfamily of membrane proteins forming secondary transporters that move a range of organic molecules across the cell membrane. Each transporter in the APC superfamily is specific for a unique subset of substrates, even if they possess a similar structural fold. The mechanism of substrate selectivity remains, by and large, elusive. Here, we report two crystal structures of an APC member from , the alanine or glycine:cation symporter (AgcS), with l- or d-alanine bound. Structural analysis combined with site-directed mutagenesis and functional studies inform on substrate binding, specificity, and modulation of the AgcS family and reveal key structural features that allow this transporter to accommodate glycine and alanine while excluding all other amino acids. Mutation of key residues in the substrate binding site expand the selectivity to include valine and leucine. These studies provide initial insights into substrate selectivity in AgcS symporters.

    View Publication Page