Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-aK0bSsPXQOqhYQEgonL2xGNrv4SPvFLb | block

Tool Types

general_search_page-panel_pane_1 | views_panes

178 Janelia Publications

Showing 51-60 of 178 results
Your Criteria:
    09/01/19 | A neuron-glia Co-culture system for studying intercellular lipid transport.
    Ioannou MS, Liu Z, Lippincott-Schwartz J
    Curr Protoc Cell Biol. 2019 Sep 01;84(1):e95. doi: 10.1002/cpcb.95

    Neurons and glia operate in a highly coordinated fashion in the brain. Although glial cells have long been known to supply lipids to neurons via lipoprotein particles, new evidence reveals that lipid transport between neurons and glia is bidirectional. Here, we describe a co-culture system to study transfer of lipids and lipid-associated proteins from neurons to glia. The assay entails culturing neurons and glia on separate coverslips, pulsing the neurons with fluorescently labeled fatty acids, and then incubating the coverslips together. As astrocytes internalize and store neuron-derived fatty acids in lipid droplets, analyzing the number, size, and fluorescence intensity of lipid droplets containing the fluorescent fatty acids provides an easy and quantifiable measure of fatty acid transport. © 2019 The Authors.

    View Publication Page
    09/01/19 | BigStitcher: reconstructing high-resolution image datasets of cleared and expanded samples.
    Hörl D, Rojas Rusak F, Preusser F, Tillberg P, Randel N, Chhetri RK, Cardona A, Keller PJ, Harz H, Leonhardt H, Treier M, Preibisch S
    Nature Methods. 2019 Sep;16(9):870-74. doi: 10.1038/s41592-019-0501-0

    Light-sheet imaging of cleared and expanded samples creates terabyte-sized datasets that consist of many unaligned three-dimensional image tiles, which must be reconstructed before analysis. We developed the BigStitcher software to address this challenge. BigStitcher enables interactive visualization, fast and precise alignment, spatially resolved quality estimation, real-time fusion and deconvolution of dual-illumination, multitile, multiview datasets. The software also compensates for optical effects, thereby improving accuracy and enabling subsequent biological analysis.

    View Publication Page
    09/01/19 | Cellular localization of tolyporphins, unusual tetrapyrroles, in a microbial photosynthetic community determined using hyperspectral confocal fluorescence microscopy.
    Barnhart-Dailey M, Zhang Y, Zhang R, Anthony SM, Aaron JS, Miller ES, Lindsey JS, Timlin JA
    Photosynthesis Research. 2019 Sep 1;141(3):259-71. doi: 10.1007/s11120-019-00625-w

    The cyanobacterial culture HT-58-2, composed of a filamentous cyanobacterium and accompanying community bacteria, produces chlorophyll a as well as the tetrapyrrole macrocycles known as tolyporphins. Almost all known tolyporphins (A-M except K) contain a dioxobacteriochlorin chromophore and exhibit an absorption spectrum somewhat similar to that of chlorophyll a. Here, hyperspectral confocal fluorescence microscopy was employed to noninvasively probe the locale of tolyporphins within live cells under various growth conditions (media, illumination, culture age). Cultures grown in nitrate-depleted media (BG-11 vs. nitrate-rich, BG-11) are known to increase the production of tolyporphins by orders of magnitude (rivaling that of chlorophyll a) over a period of 30-45 days. Multivariate curve resolution (MCR) was applied to an image set containing images from each condition to obtain pure component spectra of the endogenous pigments. The relative abundances of these components were then calculated for individual pixels in each image in the entire set, and 3D-volume renderings were obtained. At 30 days in media with or without nitrate, the chlorophyll a and phycobilisomes (combined phycocyanin and phycobilin components) co-localize in the filament outer cytoplasmic region. Tolyporphins localize in a distinct peripheral pattern in cells grown in BG-11 versus a diffuse pattern (mimicking the chlorophyll a localization) upon growth in BG-11. In BG-11, distinct puncta of tolyporphins were commonly found at the septa between cells and at the end of filaments. This work quantifies the relative abundance and envelope localization of tolyporphins in single cells, and illustrates the ability to identify novel tetrapyrroles in the presence of chlorophyll a in a photosynthetic microorganism within a non-axenic culture.

    View Publication Page
    08/29/19 | Differential nanoscale organisation of LFA-1 modulates T cell migration.
    Shannon MJ, Pineau J, Griffié J, Aaron J, Peel T, Williamson DJ, Zamoyska R, Cope AP, Cornish GH, Owen DM
    Journal of Cell Science. 2019 Aug 29;132(7):1-28. doi: 10.1242/jcs.232991
    08/27/19 | Constraining computational models using electron microscopy wiring diagrams.
    Litwin-Kumar A, Turaga SC
    Current Opinion in Neurobiology. 2019 Aug 27;58:94-100. doi: 10.1016/j.conb.2019.07.007

    Numerous efforts to generate "connectomes," or synaptic wiring diagrams, of large neural circuits or entire nervous systems are currently underway. These efforts promise an abundance of data to guide theoretical models of neural computation and test their predictions. However, there is not yet a standard set of tools for incorporating the connectivity constraints that these datasets provide into the models typically studied in theoretical neuroscience. This article surveys recent approaches to building models with constrained wiring diagrams and the insights they have provided. It also describes challenges and the need for new techniques to scale these approaches to ever more complex datasets.

    View Publication Page
    08/13/19 | Bright and photostable chemigenetic indicators for extended in vivo voltage imaging.
    Abdelfattah AS, Kawashima T, Singh A, Novak O, Liu H, Shuai Y, Huang Y, Campagnola L, Seeman SC, Yu J, Zheng J, Grimm JB, Patel R, Friedrich J, Mensh BD, Paninski L, Macklin JJ, Murphy GJ, Podgorski K, Lin B, Chen T, Turner GC, Liu Z, Koyama M, Svoboda K, Ahrens MB, Lavis LD, Schreiter ER
    Science. 2019 Aug 13;365(6454):699-704. doi: 10.1126/science.aav6416

    Imaging changes in membrane potential using genetically encoded fluorescent voltage indicators (GEVIs) has great potential for monitoring neuronal activity with high spatial and temporal resolution. Brightness and photostability of fluorescent proteins and rhodopsins have limited the utility of existing GEVIs. We engineered a novel GEVI, "Voltron", that utilizes bright and photostable synthetic dyes instead of protein-based fluorophores, extending the combined duration of imaging and number of neurons imaged simultaneously by more than tenfold relative to existing GEVIs. We used Voltron for in vivo voltage imaging in mice, zebrafish, and fruit flies. In mouse cortex, Voltron allowed single-trial recording of spikes and subthreshold voltage signals from dozens of neurons simultaneously, over 15 min of continuous imaging. In larval zebrafish, Voltron enabled the precise correlation of spike timing with behavior.

    View Publication Page
    08/15/19 | Time-variant SRC kinase activation determines endothelial permeability response.
    Klomp JE, Shaaya M, Matsche J, Rebiai R, Aaron JS, Collins KB, Huyot V, Gonzalez AM, Muller WA, Chew T, Malik AB, Karginov AV
    Cell Chemical Biology. 2019 Aug 15;26(8):1081-94. doi: 10.1016/j.chembiol.2019.04.007

    In the current model of endothelial barrier regulation, the tyrosine kinase SRC is purported to induce disassembly of endothelial adherens junctions (AJs) via phosphorylation of VE cadherin, and thereby increase junctional permeability. Here, using a chemical biology approach to temporally control SRC activation, we show that SRC exerts distinct time-variant effects on the endothelial barrier. We discovered that the immediate effect of SRC activation was to transiently enhance endothelial barrier function as the result of accumulation of VE cadherin at AJs and formation of morphologically distinct reticular AJs. Endothelial barrier enhancement via SRC required phosphorylation of VE cadherin at Y731. In contrast, prolonged SRC activation induced VE cadherin phosphorylation at Y685, resulting in increased endothelial permeability. Thus, time-variant SRC activation differentially phosphorylates VE cadherin and shapes AJs to fine-tune endothelial barrier function. Our work demonstrates important advantages of synthetic biology tools in dissecting complex signaling systems.

    View Publication Page
    08/12/19 | An automatic behavior recognition system classifies animal behaviors using movements and their temporal context.
    Ravbar P, Branson K, Simpson JH
    Journal of Neuroscience Methods. 2019 Aug 12;326:108352. doi: 10.1016/j.jneumeth.2019.108352

    Animals can perform complex and purposeful behaviors by executing simpler movements in flexible sequences. It is particularly challenging to analyze behavior sequences when they are highly variable, as is the case in language production, certain types of birdsong and, as in our experiments, flies grooming. High sequence variability necessitates rigorous quantification of large amounts of data to identify organizational principles and temporal structure of such behavior. To cope with large amounts of data, and minimize human effort and subjective bias, researchers often use automatic behavior recognition software. Our standard grooming assay involves coating flies in dust and videotaping them as they groom to remove it. The flies move freely and so perform the same movements in various orientations. As the dust is removed, their appearance changes. These conditions make it difficult to rely on precise body alignment and anatomical landmarks such as eyes or legs and thus present challenges to existing behavior classification software. Human observers use speed, location, and shape of the movements as the diagnostic features of particular grooming actions. We applied this intuition to design a new automatic behavior recognition system (ABRS) based on spatiotemporal features in the video data, heavily weighted for temporal dynamics and invariant to the animal’s position and orientation in the scene. We use these spatiotemporal features in two steps of supervised classification that reflect two time-scales at which the behavior is structured. As a proof of principle, we show results from quantification and analysis of a large data set of stimulus-induced fly grooming behaviors that would have been difficult to assess in a smaller dataset of human-annotated ethograms. While we developed and validated this approach to analyze fly grooming behavior, we propose that the strategy of combining alignment-invariant features and multi-timescale analysis may be generally useful for movement-based classification of behavior from video data.

    View Publication Page
    08/09/19 | A Neural Circuit Arbitrates between Persistence and Withdrawal in Hungry Drosophila.
    Sayin S, De Backer J, Siju KP, Wosniack ME, Lewis LP, Frisch L, Gansen B, Schlegel P, Edmondson-Stait A, Sharifi N, Fisher CB, Calle-Schuler SA, Lauritzen JS, Bock DD, Costa M, Jefferis GS, Gjorgjieva J, Grunwald Kadow IC
    Neuron. 2019 Aug 09:. doi: 10.1016/j.neuron.2019.07.028

    In pursuit of food, hungry animals mobilize significant energy resources and overcome exhaustion and fear. How need and motivation control the decision to continue or change behavior is not understood. Using a single fly treadmill, we show that hungry flies persistently track a food odor and increase their effort over repeated trials in the absence of reward suggesting that need dominates negative experience. We further show that odor tracking is regulated by two mushroom body output neurons (MBONs) connecting the MB to the lateral horn. These MBONs, together with dopaminergic neurons and Dop1R2 signaling, control behavioral persistence. Conversely, an octopaminergic neuron, VPM4, which directly innervates one of the MBONs, acts as a brake on odor tracking by connecting feeding and olfaction. Together, our data suggest a function for the MB in internal state-dependent expression of behavior that can be suppressed by external inputs conveying a competing behavioral drive.

    View Publication Page
    08/07/19 | A small number of cholinergic neurons mediate hyperaggression in female Drosophila.
    Palavicino-Maggio CB, Chan Y, McKellar C, Kravitz EA
    Proceedings of the National Academy of Sciences of the United States of America. 2019 Aug 07;116(34):17029-38. doi: 10.1073/pnas.1907042116

    In the Drosophila model of aggression, males and females fight in same-sex pairings, but a wide disparity exists in the levels of aggression displayed by the 2 sexes. A screen of Drosophila Flylight Gal4 lines by driving expression of the gene coding for the temperature sensitive dTRPA1 channel, yielded a single line (GMR26E01-Gal4) displaying greatly enhanced aggression when thermoactivated. Targeted neurons were widely distributed throughout male and female nervous systems, but the enhanced aggression was seen only in females. No effects were seen on female mating behavior, general arousal, or male aggression. We quantified the enhancement by measuring fight patterns characteristic of female and male aggression and confirmed that the effect was female-specific. To reduce the numbers of neurons involved, we used an intersectional approach with our library of enhancer trap flp-recombinase lines. Several crosses reduced the populations of labeled neurons, but only 1 cross yielded a large reduction while maintaining the phenotype. Of particular interest was a small group (2 to 4 pairs) of neurons in the approximate position of the pC1 cluster important in governing male and female social behavior. Female brains have approximately 20 doublesex (dsx)-expressing neurons within pC1 clusters. Using dsxFLP instead of 357FLP for the intersectional studies, we found that the same 2 to 4 pairs of neurons likely were identified with both. These neurons were cholinergic and showed no immunostaining for other transmitter compounds. Blocking the activation of these neurons blocked the enhancement of aggression.

    View Publication Page