Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block

Publication Date

general_search_page-panel_pane_1 | views_panes

178 Janelia Publications

Showing 11-20 of 178 results
Your Criteria:
    12/02/20 | Central processing of leg proprioception in Drosophila.
    Agrawal S, Dickinson ES, Sustar A, Gurung P, Shepherd D, Truman JW, Tuthill JC
    eLife. 2020 Dec 02;9:. doi: 10.7554/eLife.60299

    Proprioception, the sense of self-movement and position, is mediated by mechanosensory neurons that detect diverse features of body kinematics. Although proprioceptive feedback is crucial for accurate motor control, little is known about how downstream circuits transform limb sensory information to guide motor output. Here, we investigate neural circuits in that process proprioceptive information from the fly leg. We identify three cell-types from distinct developmental lineages that are positioned to receive input from proprioceptor subtypes encoding tibia position, movement, and vibration. 13Bα neurons encode femur-tibia joint angle and mediate postural changes in tibia position. 9Aα neurons also drive changes in leg posture, but encode a combination of directional movement, high frequency vibration, and joint angle. Activating 10Bα neurons, which encode tibia vibration at specific joint angles, elicits pausing in walking flies. Altogether, our results reveal that central circuits integrate information across proprioceptor subtypes to construct complex sensorimotor representations that mediate diverse behaviors, including reflexive control of limb posture and detection of leg vibration.

    View Publication Page
    12/02/20 | Cryo-EM structure of the inhibited (10S) form of myosin II.
    Yang S, Tiwari P, Lee KH, Sato O, Ikebe M, Padrón R, Craig R
    Nature. 2020 Dec 02;588(7838):521-25. doi: 10.1038/s41586-020-3007-0

    Myosin II is the motor protein that enables muscle cells to contract and nonmuscle cells to move and change shape. The molecule has two identical heads attached to an elongated tail, and can exist in two conformations: 10S and 6S, named for their sedimentation coefficients. The 6S conformation has an extended tail and assembles into polymeric filaments, which pull on actin filaments to generate force and motion. In 10S myosin, the tail is folded into three segments and the heads bend back and interact with each other and the tail, creating a compact conformation in which ATPase activity, actin activation and filament assembly are all highly inhibited. This switched-off structure appears to function as a key energy-conserving storage molecule in muscle and nonmuscle cells, which can be activated to form functional filaments as needed-but the mechanism of its inhibition is not understood. Here we have solved the structure of smooth muscle 10S myosin by cryo-electron microscopy with sufficient resolution to enable improved understanding of the function of the head and tail regions of the molecule and of the key intramolecular contacts that cause inhibition. Our results suggest an atomic model for the off state of myosin II, for its activation and unfolding by phosphorylation, and for understanding the clustering of disease-causing mutations near sites of intramolecular interaction.

    View Publication Page
    12/02/20 | Distributed control of motor circuits for backward walking in Drosophila.
    Feng K, Sen R, minegishi r, Dübbert M, Bockemühl T, Büschges A, Dickson BJ
    Nature Communications. 2020 Dec 02;11(1):6166. doi: 10.1038/s41467-020-19936-x

    How do descending inputs from the brain control leg motor circuits to change how an animal walks? Conceptually, descending neurons are thought to function either as command-type neurons, in which a single type of descending neuron exerts a high-level control to elicit a coordinated change in motor output, or through a population coding mechanism, whereby a group of neurons, each with local effects, act in combination to elicit a global motor response. The Drosophila Moonwalker Descending Neurons (MDNs), which alter leg motor circuit dynamics so that the fly walks backwards, exemplify the command-type mechanism. Here, we identify several dozen MDN target neurons within the leg motor circuits, and show that two of them mediate distinct and highly-specific changes in leg muscle activity during backward walking: LBL40 neurons provide the hindleg power stroke during stance phase; LUL130 neurons lift the legs at the end of stance to initiate swing. Through these two effector neurons, MDN directly controls both the stance and swing phases of the backward stepping cycle. These findings suggest that command-type descending neurons can also operate through the distributed control of local motor circuits.

    View Publication Page
    12/02/20 | Social hierarchy is established and maintained with distinct acts of aggression in male Drosophila melanogaster.
    Simon JC, Heberlein U
    Journal of Experimental Biology. 2020 Dec 02:. doi: 10.1242/jeb.232439

    Social interactions pivot on an animal's experiences, internal states, and feedback from others. This complexity drives the need for precise descriptions of behavior to dissect the fine detail of its genetic and neural circuit bases. In laboratory assays, male reliably exhibit aggression, and its extent is generally measured by scoring lunges, a feature of aggression in which one male quickly thrusts onto his opponent. Here, we introduce an explicit approach to identify both the onset and reversals in hierarchical status between opponents and observe that distinct aggressive acts reproducibly precede, concur, or follow the establishment of dominance. We find that lunges are insufficient for establishing dominance. Rather, lunges appear to reflect the dominant state of a male and help in maintaining his social status. Lastly, we characterize the recurring and escalating structure of aggression that emerges through subsequent reversals in dominance. Collectively, this work provides a framework for studying the complexity of agonistic interactions in male flies enabling its neurogenetic basis to be understood with precision.

    View Publication Page
    12/01/20 | A programmable sequence of reporters for lineage analysis.
    Garcia-Marques J, Isabel Espinosa Medina , Ku K, Yang C, Koyama M, Yu H, Lee T
    Nature Neuroscience. 2020 Dec 01;23(12):1618-28. doi: 10.1038/s41593-020-0676-9

    We present CLADES (cell lineage access driven by an edition sequence), a technology for cell lineage studies based on CRISPR-Cas9 techniques. CLADES relies on a system of genetic switches to activate and inactivate reporter genes in a predetermined order. Targeting CLADES to progenitor cells allows the progeny to inherit a sequential cascade of reporters, thereby coupling birth order to reporter expression. This system, which can also be temporally induced by heat shock, enables the temporal resolution of lineage development and can therefore be used to deconstruct an extended cell lineage by tracking the reporters expressed in the progeny. When targeted to the germ line, the same cascade progresses across animal generations, predominantly marking each generation with the corresponding combination of reporters. CLADES therefore offers an innovative strategy for making programmable cascades of genes that can be used for genetic manipulation or to record serial biological events.

    View Publication Page
    12/01/20 | Dense neuronal reconstruction through X-ray holographic nano-tomography.
    Kuan AT, Phelps JS, Thomas LA, Nguyen TM, Han J, Chen C, Azevedo AW, Tuthill JC, Funke J, Cloetens P, Pacureanu A, Lee WA
    Nature Neuroscience. 2020 Dec -1;23(12):1637-43. doi: 10.1038/s41593-020-0704-9

    Imaging neuronal networks provides a foundation for understanding the nervous system, but resolving dense nanometer-scale structures over large volumes remains challenging for light microscopy (LM) and electron microscopy (EM). Here we show that X-ray holographic nano-tomography (XNH) can image millimeter-scale volumes with sub-100-nm resolution, enabling reconstruction of dense wiring in Drosophila melanogaster and mouse nervous tissue. We performed correlative XNH and EM to reconstruct hundreds of cortical pyramidal cells and show that more superficial cells receive stronger synaptic inhibition on their apical dendrites. By combining multiple XNH scans, we imaged an adult Drosophila leg with sufficient resolution to comprehensively catalog mechanosensory neurons and trace individual motor axons from muscles to the central nervous system. To accelerate neuronal reconstructions, we trained a convolutional neural network to automatically segment neurons from XNH volumes. Thus, XNH bridges a key gap between LM and EM, providing a new avenue for neural circuit discovery.

    View Publication Page
    Svoboda Lab
    12/01/20 | High throughput instrument to screen fluorescent proteins under two-photon excitation.
    Molina RS, King J, Franklin J, Clack N, McRaven C, Goncharov V, Flickinger D, Svoboda K, Drobizhev M, Hughes TE
    Biomedical Optics Express. 2020 Dec 01;11(12):7192-7203. doi: 10.1364/BOE.409353

    Two-photon microscopy together with fluorescent proteins and fluorescent protein-based biosensors are commonly used tools in neuroscience. To enhance their experimental scope, it is important to optimize fluorescent proteins for two-photon excitation. Directed evolution of fluorescent proteins under one-photon excitation is common, but many one-photon properties do not correlate with two-photon properties. A simple system for expressing fluorescent protein mutants is colonies on an agar plate. The small focal volume of two-photon excitation makes creating a high throughput screen in this system a challenge for a conventional point-scanning approach. We present an instrument and accompanying software that solves this challenge by selectively scanning each colony based on a colony map captured under one-photon excitation. This instrument, called the GIZMO, can measure the two-photon excited fluorescence of 10,000 colonies in 7 hours. We show that the GIZMO can be used to evolve a fluorescent protein under two-photon excitation.

    View Publication Page
    12/01/20 | Linking axon morphology to gene expression: a strategy for neuronal cell-type classification.
    Winnubst J, Spruston N, Harris JA
    Current Opinion in Neurobiology. 2020 Dec 01;65:70-76. doi: 10.1016/j.conb.2020.10.006

    To study how the brain drives cognition and behavior we need to understand its cellular composition. Advances in single-cell transcriptomics have revolutionized our ability to characterize neuronal diversity. To arrive at meaningful descriptions of cell types, however, gene expression must be linked to structural and functional properties. Axonal projection patterns are an appropriate measure, as they are diverse, change only gradually over time, and they influence and constrain circuit function. Here, we consider how efforts to map transcriptional and morphological diversity in the mouse brain could be linked to generate a modern taxonomy of the mouse brain.

    View Publication Page
    Card Lab
    12/01/20 | Multi-regional circuits underlying visually guided decision-making in Drosophila.
    Cheong HS, Siwanowicz I, Card GM
    Current Opinion in Neurobiology. 2020 Dec 01;65:77-87. doi: 10.1016/j.conb.2020.10.010

    Visually guided decision-making requires integration of information from distributed brain areas, necessitating a brain-wide approach to examine its neural mechanisms. New tools in Drosophila melanogaster enable circuits spanning the brain to be charted with single cell-type resolution. Here, we highlight recent advances uncovering the computations and circuits that transform and integrate visual information across the brain to make behavioral choices. Visual information flows from the optic lobes to three primary central brain regions: a sensorimotor mapping area and two 'higher' centers for memory or spatial orientation. Rapid decision-making during predator evasion emerges from the spike timing dynamics in parallel sensorimotor cascades. Goal-directed decisions may occur through memory, navigation and valence processing in the central complex and mushroom bodies.

    View Publication Page
    12/01/20 | The evolution of a cell biologist.
    Lippincott-Schwartz J
    Molecular Biology of the Cell. 2020 Dec 01;31(25):2763-2767. doi: 10.1091/mbc.E20-09-0603

    I am honored and humbled to receive the E. B. Wilson Medal and happy to share some reflections on my journey as a cell biologist. It took me a while to realize that my interest in biology would center on how cells are spatially and dynamically organized. From an initial fascination with cellular structures I came to appreciate that cells exhibit dynamism across all scales-from their molecules, to molecular complexes, to organelles. Uncovering the principles of this dynamism, including new ways to observe and quantify it, has been the guiding star of my work.

    View Publication Page