Filter
Associated Lab
- Ahrens Lab (2) Apply Ahrens Lab filter
- Aso Lab (1) Apply Aso Lab filter
- Betzig Lab (2) Apply Betzig Lab filter
- Beyene Lab (1) Apply Beyene Lab filter
- Branson Lab (2) Apply Branson Lab filter
- Card Lab (1) Apply Card Lab filter
- Cardona Lab (5) Apply Cardona Lab filter
- Clapham Lab (1) Apply Clapham Lab filter
- Dickson Lab (2) Apply Dickson Lab filter
- Dudman Lab (2) Apply Dudman Lab filter
- Espinosa Medina Lab (2) Apply Espinosa Medina Lab filter
- Feliciano Lab (1) Apply Feliciano Lab filter
- Funke Lab (3) Apply Funke Lab filter
- Harris Lab (2) Apply Harris Lab filter
- Heberlein Lab (1) Apply Heberlein Lab filter
- Hermundstad Lab (3) Apply Hermundstad Lab filter
- Hess Lab (5) Apply Hess Lab filter
- Jayaraman Lab (1) Apply Jayaraman Lab filter
- Karpova Lab (1) Apply Karpova Lab filter
- Keller Lab (2) Apply Keller Lab filter
- Lavis Lab (10) Apply Lavis Lab filter
- Lee (Albert) Lab (1) Apply Lee (Albert) Lab filter
- Lippincott-Schwartz Lab (14) Apply Lippincott-Schwartz Lab filter
- Liu (Zhe) Lab (6) Apply Liu (Zhe) Lab filter
- Looger Lab (11) Apply Looger Lab filter
- O'Shea Lab (1) Apply O'Shea Lab filter
- Pachitariu Lab (6) Apply Pachitariu Lab filter
- Podgorski Lab (1) Apply Podgorski Lab filter
- Reiser Lab (3) Apply Reiser Lab filter
- Romani Lab (4) Apply Romani Lab filter
- Rubin Lab (4) Apply Rubin Lab filter
- Saalfeld Lab (4) Apply Saalfeld Lab filter
- Scheffer Lab (2) Apply Scheffer Lab filter
- Schreiter Lab (1) Apply Schreiter Lab filter
- Spruston Lab (3) Apply Spruston Lab filter
- Stern Lab (5) Apply Stern Lab filter
- Sternson Lab (3) Apply Sternson Lab filter
- Stringer Lab (2) Apply Stringer Lab filter
- Svoboda Lab (7) Apply Svoboda Lab filter
- Tebo Lab (1) Apply Tebo Lab filter
- Tervo Lab (1) Apply Tervo Lab filter
- Tillberg Lab (3) Apply Tillberg Lab filter
- Truman Lab (3) Apply Truman Lab filter
- Turaga Lab (12) Apply Turaga Lab filter
- Turner Lab (1) Apply Turner Lab filter
- Zlatic Lab (1) Apply Zlatic Lab filter
Associated Project Team
Associated Support Team
- Cryo-Electron Microscopy (3) Apply Cryo-Electron Microscopy filter
- Electron Microscopy (1) Apply Electron Microscopy filter
- Integrative Imaging (2) Apply Integrative Imaging filter
- Invertebrate Shared Resource (3) Apply Invertebrate Shared Resource filter
- Janelia Experimental Technology (2) Apply Janelia Experimental Technology filter
- Molecular Genomics (2) Apply Molecular Genomics filter
- Primary & iPS Cell Culture (1) Apply Primary & iPS Cell Culture filter
- Project Technical Resources (3) Apply Project Technical Resources filter
- Quantitative Genomics (1) Apply Quantitative Genomics filter
- Scientific Computing Software (4) Apply Scientific Computing Software filter
- Viral Tools (2) Apply Viral Tools filter
Publication Date
- December 2021 (19) Apply December 2021 filter
- November 2021 (15) Apply November 2021 filter
- October 2021 (12) Apply October 2021 filter
- September 2021 (14) Apply September 2021 filter
- August 2021 (15) Apply August 2021 filter
- July 2021 (17) Apply July 2021 filter
- June 2021 (10) Apply June 2021 filter
- May 2021 (20) Apply May 2021 filter
- April 2021 (20) Apply April 2021 filter
- March 2021 (8) Apply March 2021 filter
- February 2021 (12) Apply February 2021 filter
- January 2021 (13) Apply January 2021 filter
- Remove 2021 filter 2021
175 Janelia Publications
Showing 171-175 of 175 resultsThe mammalian heart is derived from multiple cell lineages; however, our understanding of when and how the diverse cardiac cell types arise is limited. We mapped the origin of the embryonic mouse heart at single-cell resolution using a combination of transcriptomic, imaging, and genetic lineage labeling approaches. This provided a transcriptional and anatomic definition of cardiac progenitor types. Furthermore, it revealed a cardiac progenitor pool that is anatomically and transcriptionally distinct from currently known cardiac progenitors. Besides contributing to cardiomyocytes, these cells also represent the earliest progenitor of the epicardium, a source of trophic factors and cells during cardiac development and injury. This study provides detailed insights into the formation of early cardiac cell types, with particular relevance to the development of cell-based cardiac regenerative therapies.
The mechanisms by which synaptic partners recognize each other and establish appropriate numbers of connections during embryonic development to form functional neural circuits are poorly understood. We combined electron microscopy reconstruction, functional imaging of neural activity, and behavioral experiments to elucidate the roles of (1) partner identity, (2) location, and (3) activity in circuit assembly in the embryonic nerve cord of Drosophila. We found that postsynaptic partners are able to find and connect to their presynaptic partners even when these have been shifted to ectopic locations or silenced. However, orderly positioning of axon terminals by positional cues and synaptic activity is required for appropriate numbers of connections between specific partners, for appropriate balance between excitatory and inhibitory connections, and for appropriate functional connectivity and behavior. Our study reveals with unprecedented resolution the fine connectivity effects of multiple factors that work together to control the assembly of neural circuits.
Alcohol use disorder (AUD) is characterized by loss of control in limiting alcohol intake. This may involve intermittent periods of abstinence followed by alcohol seeking and, consequently, relapse. However, little is understood of the molecular mechanisms underlying the impact of alcohol deprivation on behavior. Using a new Drosophila melanogaster repeated intermittent alcohol exposure model, we sought to identify how ethanol deprivation alters spontaneous behavior, determine the associated neural structures, and reveal correlated changes in brain gene expression. We found that repeated intermittent ethanol-odor exposures followed by ethanol-deprivation dynamically induces behaviors associated with a negative affect state. Although behavioral states broadly mapped to many brain regions, persistent changes in social behaviors mapped to the mushroom body and surrounding neuropil. This occurred concurrently with changes in expression of genes associated with sensory responses, neural plasticity, and immunity. Like social behaviors, immune response genes were upregulated following three-day repeated intermittent ethanol-odor exposures and persisted with one or two days of ethanol-deprivation, suggesting an enduring change in molecular function. Our study provides a framework for identifying how ethanol deprivation alters behavior with correlated underlying circuit and molecular changes.
Animals exhibit different behavioral responses to the same sensory cue depending on their internal state at a given moment. How and where in the brain are sensory inputs combined with state information to select an appropriate behavior? Here, we investigate how food deprivation affects olfactory behavior in larvae. We find that certain odors repel well-fed animals but attract food-deprived animals and that feeding state flexibly alters neural processing in the first olfactory center, the antennal lobe. Hunger differentially modulates two output pathways required for opposing behavioral responses. Upon food deprivation, attraction-mediating uniglomerular projection neurons show elevated odor-evoked activity, whereas an aversion-mediating multiglomerular projection neuron receives odor-evoked inhibition. The switch between these two pathways is regulated by the lone serotonergic neuron in the antennal lobe, CSD. Our findings demonstrate how flexible behaviors can arise from state-dependent circuit dynamics in an early sensory processing center.
Choosing a mate is one of the most consequential decisions a female will make during her lifetime. A female fly signals her willingness to mate by opening her vaginal plates, allowing a courting male to copulate. Vaginal plate opening (VPO) occurs in response to the male courtship song and is dependent on the mating status of the female. How these exteroceptive (song) and interoceptive (mating status) inputs are integrated to regulate VPO remains unknown. Here we characterize the neural circuitry that implements mating decisions in the brain of female Drosophila melanogaster. We show that VPO is controlled by a pair of female-specific descending neurons (vpoDNs). The vpoDNs receive excitatory input from auditory neurons (vpoENs), which are tuned to specific features of the D. melanogaster song, and from pC1 neurons, which encode the mating status of the female. The song responses of vpoDNs, but not vpoENs, are attenuated upon mating, accounting for the reduced receptivity of mated females. This modulation is mediated by pC1 neurons. The vpoDNs thus directly integrate the external and internal signals that control the mating decisions of Drosophila females.