Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

166 Janelia Publications

Showing 131-140 of 166 results
Your Criteria:
    03/15/22 | Myosin VI regulates the spatial organisation of mammalian transcription initiation.
    Hari-Gupta Y, Fili N, Dos Santos Á, Cook AW, Gough RE, Reed HC, Wang L, Aaron J, Venit T, Wait E, Grosse-Berkenbusch A, Gebhardt JC, Percipalle P, Chew T, Martin-Fernandez M, Toseland CP
    Nature Communications. 2022 Mar 15;13(1):1346. doi: 10.1038/s41467-022-28962-w

    During transcription, RNA Polymerase II (RNAPII) is spatially organised within the nucleus into clusters that correlate with transcription activity. While this is a hallmark of genome regulation in mammalian cells, the mechanisms concerning the assembly, organisation and stability remain unknown. Here, we have used combination of single molecule imaging and genomic approaches to explore the role of nuclear myosin VI (MVI) in the nanoscale organisation of RNAPII. We reveal that MVI in the nucleus acts as the molecular anchor that holds RNAPII in high density clusters. Perturbation of MVI leads to the disruption of RNAPII localisation, chromatin organisation and subsequently a decrease in gene expression. Overall, we uncover the fundamental role of MVI in the spatial regulation of gene expression.

    View Publication Page
    03/15/22 | When light meets biology - how the specimen affects quantitative microscopy.
    Reiche MA, Aaron JS, Boehm U, DeSantis MC, Hobson CM, Khuon S, Lee RM, Chew T
    Journal of Cell Science. 2022 Mar 15;135(6):. doi: 10.1242/jcs.259656

    Fluorescence microscopy images should not be treated as perfect representations of biology. Many factors within the biospecimen itself can drastically affect quantitative microscopy data. Whereas some sample-specific considerations, such as photobleaching and autofluorescence, are more commonly discussed, a holistic discussion of sample-related issues (which includes less-routine topics such as quenching, scattering and biological anisotropy) is required to appropriately guide life scientists through the subtleties inherent to bioimaging. Here, we consider how the interplay between light and a sample can cause common experimental pitfalls and unanticipated errors when drawing biological conclusions. Although some of these discrepancies can be minimized or controlled for, others require more pragmatic considerations when interpreting image data. Ultimately, the power lies in the hands of the experimenter. The goal of this Review is therefore to survey how biological samples can skew quantification and interpretation of microscopy data. Furthermore, we offer a perspective on how to manage many of these potential pitfalls.

    View Publication Page
    03/14/22 | A population of descending neurons that regulates the flight motor of Drosophila.
    Namiki S, Ros IG, Morrow C, Rowell WJ, Card GM, Korff W, Dickinson MH
    Current Biology. 2022 Mar 14;32(5):1189-1196. doi: 10.1016/j.cub.2022.01.008

    Similar to many insect species, Drosophila melanogaster is capable of maintaining a stable flight trajectory for periods lasting up to several hours. Because aerodynamic torque is roughly proportional to the fifth power of wing length, even small asymmetries in wing size require the maintenance of subtle bilateral differences in flapping motion to maintain a stable path. Flies can even fly straight after losing half of a wing, a feat they accomplish via very large, sustained kinematic changes to both the damaged and intact wings. Thus, the neural network responsible for stable flight must be capable of sustaining fine-scaled control over wing motion across a large dynamic range. In this study, we describe an unusual type of descending neuron (DNg02) that projects directly from visual output regions of the brain to the dorsal flight neuropil of the ventral nerve cord. Unlike many descending neurons, which exist as single bilateral pairs with unique morphology, there is a population of at least 15 DNg02 cell pairs with nearly identical shape. By optogenetically activating different numbers of DNg02 cells, we demonstrate that these neurons regulate wingbeat amplitude over a wide dynamic range via a population code. Using two-photon functional imaging, we show that DNg02 cells are responsive to visual motion during flight in a manner that would make them well suited to continuously regulate bilateral changes in wing kinematics. Collectively, we have identified a critical set of descending neurons that provides the sensitivity and dynamic range required for flight control.

    View Publication Page
    Card Lab
    03/11/22 | Context-dependent control of behavior in Drosophila.
    Oram TB, Card GM
    Current Opinion in Neurobiology. 2022 Mar 11;73:102523. doi: 10.1016/j.conb.2022.02.003

    The representation of contextual information peripheral to a salient stimulus is central to an animal's ability to correctly interpret and flexibly respond to that stimulus. While the computations and circuits underlying the context-dependent modulation of stimulus-response pairings have typically been studied in vertebrates, the genetic tractability, numeric simplification, and well-characterized connectivity patterns of the Drosophila melanogaster brain have facilitated circuit-level insights into contextual processing. Recent studies in flies reveal the neuronal mechanisms that create flexible context-dependent behavioral responses to sensory events in conditions of predation threat, feeding regulation, and social interaction.

    View Publication Page
    03/11/22 | Motor cortical output for skilled forelimb movement is selectively distributed across projection neuron classes.
    Park J, Phillips JW, Guo J, Martin KA, Hantman AW, Dudman JT
    Science Advances. 2022 Mar 11;8(10):eabj5167. doi: 10.1126/sciadv.abj5167

    The interaction of descending neocortical outputs and subcortical premotor circuits is critical for shaping skilled movements. Two broad classes of motor cortical output projection neurons provide input to many subcortical motor areas: pyramidal tract (PT) neurons, which project throughout the neuraxis, and intratelencephalic (IT) neurons, which project within the cortex and subcortical striatum. It is unclear whether these classes are functionally in series or whether each class carries distinct components of descending motor control signals. Here, we combine large-scale neural recordings across all layers of motor cortex with cell type-specific perturbations to study cortically dependent mouse motor behaviors: kinematically variable manipulation of a joystick and a kinematically precise reach-to-grasp. We find that striatum-projecting IT neuron activity preferentially represents amplitude, whereas pons-projecting PT neurons preferentially represent the variable direction of forelimb movements. Thus, separable components of descending motor cortical commands are distributed across motor cortical projection cell classes.

    View Publication Page
    03/09/22 | Regulation of liver subcellular architecture controls metabolic homeostasis.
    Parlakgül G, Arruda AP, Pang S, Cagampan E, Min N, Güney E, Lee GY, Inouye K, Hess HF, Xu CS, Hotamışlıgil GS
    Nature. 2022 Mar 09;603(7902):736-742. doi: 10.1038/s41586-022-04488-5

    Cells display complex intracellular organization by compartmentalization of metabolic processes into organelles, yet the resolution of these structures in the native tissue context and their functional consequences are not well understood. Here we resolved the three-dimensional structural organization of organelles in large (more than 2.8 × 10 µm) volumes of intact liver tissue (15 partial or full hepatocytes per condition) at high resolution (8 nm isotropic pixel size) using enhanced focused ion beam scanning electron microscopy imaging followed by deep-learning-based automated image segmentation and 3D reconstruction. We also performed a comparative analysis of subcellular structures in liver tissue of lean and obese mice and found substantial alterations, particularly in hepatic endoplasmic reticulum (ER), which undergoes massive structural reorganization characterized by marked disorganization of stacks of ER sheets and predominance of ER tubules. Finally, we demonstrated the functional importance of these structural changes by monitoring the effects of experimental recovery of the subcellular organization on cellular and systemic metabolism. We conclude that the hepatic subcellular organization of the ER architecture are highly dynamic, integrated with the metabolic state and critical for adaptive homeostasis and tissue health.

    View Publication Page
    03/07/22 | Neuromuscular embodiment of feedback control elements in Drosophila flight
    Samuel C. Whitehead , Sofia Leone , Theodore Lindsay , Matthew Meiselman , Noah Cowan , Michael Dickinson , Nilay Yapici , David Stern , Troy Shirangi , Itai Cohen
    bioRxiv. 2022 Mar 07:. doi: 10.1101/2022.02.22.481344

    While insects like Drosophila are flying, aerodynamic instabilities require that they make millisecond-timescale adjustments to their wing motion to stay aloft and on course. These stabilization reflexes can be modeled as a proportional-integral (PI) controller; however, it is unclear how such control might be instantiated in insects at the level of muscles and neurons. Here, we show that the b1 and b2 motor units—prominent components of the fly’s steering muscles system—modulate specific elements of the PI controller: the angular displacement (integral, I) and angular velocity (proportional, P), respectively. Moreover, these effects are observed only during the stabilization of pitch. Our results provide evidence for an organizational principle in which each muscle contributes to a specific functional role in flight control, a finding that highlights the power of using top-down behavioral modeling to guide bottom-up cellular manipulation studies.

    View Publication Page
    03/03/22 | The Consistency of Gastropod Identified Neurons Distinguishes Intra-Individual Plasticity From Inter-Individual Variability in Neural Circuits.
    Tamvacakis AN, Lillvis JL, Sakurai A, Katz PS
    Frontiers in Behavioral Neuroscience. 2022 Mar 03;16:855235. doi: 10.3389/fnbeh.2022.855235

    Gastropod mollusks are known for their large, individually identifiable neurons, which are amenable to long-term intracellular recordings that can be repeated from animal to animal. The constancy of individual neurons can help distinguish state-dependent or temporal variation within an individual from actual variability between individual animals. Investigations into the circuitry underlying rhythmic swimming movements of the gastropod species, and have uncovered intra- and inter-individual variability in synaptic connectivity and serotonergic neuromodulation. has a reliably evoked escape swim behavior that is produced by a central pattern generator (CPG) composed of a small number of identifiable neurons. There is apparent individual variability in some of the connections between neurons that is inconsequential for the production of the swim behavior under normal conditions, but determines whether that individual can swim following a neural lesion. Serotonergic neuromodulation of synaptic strength intrinsic to the CPG creates neural circuit plasticity within an individual and contributes to reorganization of the network during recovery from injury and during learning. In , variability over time in the modulatory actions of serotonin and in expression of serotonin receptor genes in an identified neuron directly reflects variation in swimming behavior. Tracking behavior and electrophysiology over hours to days was necessary to identify the functional consequences of these intra-individual, time-dependent variations. This work demonstrates the importance of unambiguous neuron identification, properly assessing the animal and network states, and tracking behavior and physiology over time to distinguish plasticity within the same animal at different times from variability across individual animals.

    View Publication Page
    02/28/22 | Melding Synthetic Molecules and Genetically Encoded Proteins to Forge New Tools for Neuroscience.
    Kumar P, Lavis LD
    Annual Review of Neuroscience. 2022 Feb 28:. doi: 10.1146/annurev-neuro-110520-030031

    Unraveling the complexity of the brain requires sophisticated methods to probe and perturb neurobiological processes with high spatiotemporal control. The field of chemical biology has produced general strategies to combine the molecular specificity of small-molecule tools with the cellular specificity of genetically encoded reagents. Here, we survey the application, refinement, and extension of these hybrid small-molecule:protein methods to problems in neuroscience, which yields powerful reagents to precisely measure and manipulate neural systems. Expected final online publication date for the , Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

    View Publication Page
    02/28/22 | Melding Synthetic Molecules and Genetically Encoded Proteins to Forge New Tools for Neuroscience.
    Kumar P, Lavis LD
    Annual Review Neuroscience. 2022 Feb 28:. doi: 10.1146/annurev-neuro-110520-030031

    Unraveling the complexity of the brain requires sophisticated methods to probe and perturb neurobiological processes with high spatiotemporal control. The field of chemical biology has produced general strategies to combine the molecular specificity of small-molecule tools with the cellular specificity of genetically encoded reagents. Here, we survey the application, refinement, and extension of these hybrid small-molecule:protein methods to problems in neuroscience, which yields powerful reagents to precisely measure and manipulate neural systems. Expected final online publication date for the , Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

    View Publication Page