Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

general_search_page-panel_pane_1 | views_panes

59 Janelia Publications

Showing 31-40 of 59 results
Your Criteria:
    09/22/15 | A specific E3 ligase/deubiquitinase pair modulates TBP protein levels during muscle differentiation.
    Li L, Martinez SS, Hu W, Liu Z, Tjian R
    eLife. 2015;4:. doi: 10.7554/eLife.08536

    TFIID-a complex of TATA-binding protein (TBP) and TBP-associated factors (TAFs)-is a central component of the Pol II promoter recognition apparatus. Recent studies have revealed significant downregulation of TFIID subunits in terminally differentiated myocytes, hepatocytes and adipocytes. Here, we report that TBP protein levels are tightly regulated by the ubiquitin-proteasome system. Using an in vitro ubiquitination assay coupled with biochemical fractionation, we identified Huwe1 as an E3 ligase targeting TBP for K48-linked ubiquitination and proteasome-mediated degradation. Upregulation of Huwe1 expression during myogenesis induces TBP degradation and myotube differentiation. We found that Huwe1 activity on TBP is antagonized by the deubiquitinase USP10, which protects TBP from degradation. Thus, modulating the levels of both Huwe1 and USP10 appears to fine-tune the requisite degradation of TBP during myogenesis. Together, our study unmasks a previously unknown interplay between an E3 ligase and a deubiquitinating enzyme regulating TBP levels during cellular differentiation.

    View Publication Page
    Gonen Lab
    09/09/15 | Structure of the toxic core of α-synuclein from invisible crystals.
    Rodriguez JA, Ivanova MI, Sawaya MR, Cascio D, Reyes FE, Shi D, Sangwan S, Guenther EL, Johnson LM, Zhang M, Jiang L, Arbing MA, Nannenga BL, Hattne J, Whitelegge J, Brewster AS, Messerschmidt M, Boutet S, Sauter NK, Gonen T, Eisenberg DS
    Nature. 2015 Sep 9;525(7570):486-90. doi: 10.1038/nature15368

    The protein α-synuclein is the main component of Lewy bodies, the neuron-associated aggregates seen in Parkinson disease and other neurodegenerative pathologies. An 11-residue segment, which we term NACore, appears to be responsible for amyloid formation and cytotoxicity of human α-synuclein. Here we describe crystals of NACore that have dimensions smaller than the wavelength of visible light and thus are invisible by optical microscopy. As the crystals are thousands of times too small for structure determination by synchrotron X-ray diffraction, we use micro-electron diffraction to determine the structure at atomic resolution. The 1.4 Å resolution structure demonstrates that this method can determine previously unknown protein structures and here yields, to our knowledge, the highest resolution achieved by any cryo-electron microscopy method to date. The structure exhibits protofibrils built of pairs of face-to-face β-sheets. X-ray fibre diffraction patterns show the similarity of NACore to toxic fibrils of full-length α-synuclein. The NACore structure, together with that of a second segment, inspires a model for most of the ordered portion of the toxic, full-length α-synuclein fibril, presenting opportunities for the design of inhibitors of α-synuclein fibrils.

    View Publication Page
    Gonen Lab
    07/15/15 | Structure of a designed tetrahedral protein assembly variant engineered to have improved soluble expression.
    Bale JB, Park RU, Liu Y, Gonen S, Gonen T, Cascio D, King NP, Yeates TO, Baker D
    Protein Science. 2015 Jul 15;24(10):1695-701. doi: 10.1002/pro.2748

    We recently reported the development of a computational method for the design of co-assembling, multi-component protein nanomaterials. While four such materials were validated at high-resolution by X-ray crystallography, low yield of soluble protein prevented X-ray structure determination of a fifth designed material, T33-09. Here we report the design and crystal structure of T33-31, a variant of T33-09 with improved soluble yield resulting from redesign efforts focused on mutating solvent-exposed side chains to charged amino acids. The structure is found to match the computational design model with atomic-level accuracy, providing further validation of the design approach and demonstrating a simple and potentially general means of improving the yield of designed protein nanomaterials. This article is protected by copyright. All rights reserved.

    View Publication Page
    Gonen Lab
    07/01/15 | MicroED data collection and processing.
    Hattne J, Reyes FE, Nannenga BL, Shi D, de la Cruz MJ, Leslie AG, Gonen T
    Acta Crystallographica Section A: Foundations & Advances. 2015 Jul 01;71(Pt 4):353-60. doi: 10.1107/S2053273315010669

    MicroED, a method at the intersection of X-ray crystallography and electron cryo-microscopy, has rapidly progressed by exploiting advances in both fields and has already been successfully employed to determine the atomic structures of several proteins from sub-micron-sized, three-dimensional crystals. A major limiting factor in X-ray crystallography is the requirement for large and well ordered crystals. By permitting electron diffraction patterns to be collected from much smaller crystals, or even single well ordered domains of large crystals composed of several small mosaic blocks, MicroED has the potential to overcome the limiting size requirement and enable structural studies on difficult-to-crystallize samples. This communication details the steps for sample preparation, data collection and reduction necessary to obtain refined, high-resolution, three-dimensional models by MicroED, and presents some of its unique challenges.

    View Publication Page
    Gonen Lab
    06/19/15 | Design of ordered two-dimensional arrays mediated by noncovalent protein-protein interfaces.
    Gonen S, DiMaio F, Gonen T, Baker D
    Science. 2015 Jun 19;348(6241):1365-8. doi: 10.1126/science.aaa9897

    We describe a general approach to designing two-dimensional (2D) protein arrays mediated by noncovalent protein-protein interfaces. Protein homo-oligomers are placed into one of the seventeen 2D layer groups, the degrees of freedom of the lattice are sampled to identify configurations with shape-complementary interacting surfaces, and the interaction energy is minimized using sequence design calculations. We used the method to design proteins that self-assemble into layer groups P 3 2 1, P 4 21 2, and P 6. Projection maps of micrometer-scale arrays, assembled both in vitro and in vivo, are consistent with the design models and display the target layer group symmetry. Such programmable 2D protein lattices should enable new approaches to structure determination, sensing, and nanomaterial engineering.

    View Publication Page
    Gonen Lab
    10/24/14 | High thermodynamic stability of parametrically designed helical bundles.
    Huang P, Oberdorfer G, Xu C, Pei XY, Nannenga BL, Rogers JM, DiMaio F, Gonen T, Luisi B, Baker D
    Science. 2014 Oct 24;346(6208):481-5. doi: 10.1126/science.1257481

    We describe a procedure for designing proteins with backbones produced by varying the parameters in the Crick coiled coil-generating equations. Combinatorial design calculations identify low-energy sequences for alternative helix supercoil arrangements, and the helices in the lowest-energy arrangements are connected by loop building. We design an antiparallel monomeric untwisted three-helix bundle with 80-residue helices, an antiparallel monomeric right-handed four-helix bundle, and a pentameric parallel left-handed five-helix bundle. The designed proteins are extremely stable (extrapolated ΔGfold > 60 kilocalories per mole), and their crystal structures are close to those of the design models with nearly identical core packing between the helices. The approach enables the custom design of hyperstable proteins with fine-tuned geometries for a wide range of applications.

    View Publication Page
    Gonen Lab
    10/17/14 | Structure of catalase determined by MicroED.
    Nannenga BL, Shi D, Hattne J, Reyes FE, Gonen T
    eLife. 2014 Oct 17;3:e03600. doi: 10.7554/eLife.03600

    MicroED is a recently developed method that uses electron diffraction for structure determination from very small three-dimensional crystals of biological material. Previously we used a series of still diffraction patterns to determine the structure of lysozyme at 2.9 Å resolution with MicroED (Shi et al., 2013). Here we present the structure of bovine liver catalase determined from a single crystal at 3.2 Å resolution by MicroED. The data were collected by continuous rotation of the sample under constant exposure and were processed and refined using standard programs for X-ray crystallography. The ability of MicroED to determine the structure of bovine liver catalase, a protein that has long resisted atomic analysis by traditional electron crystallography, demonstrates the potential of this method for structure determination.

    View Publication Page
    Gonen Lab
    09/01/14 | High-resolution structure determination by continuous-rotation data collection in MicroED.
    Nannenga BL, Shi D, Leslie AG, Gonen T
    Nature Methods. 2014 Sep;11(9):927-30. doi: 10.1038/nmeth.3043

    MicroED uses very small three-dimensional protein crystals and electron diffraction for structure determination. We present an improved data collection protocol for MicroED called 'continuous rotation'. Microcrystals are continuously rotated during data collection, yielding more accurate data. The method enables data processing with the crystallographic software tool MOSFLM, which resulted in improved resolution for the model protein lysozyme. These improvements are paving the way for the broad implementation and application of MicroED in structural biology.

    View Publication Page
    Gonen Lab
    08/13/14 | A type VI secretion-related pathway in bacteroidetes mediates interbacterial antagonism.
    Russell AB, Wexler AG, Harding BN, Whitney JC, Bohn AJ, Goo YA, Tran BQ, Barry NA, Zheng H, Peterson SB, Chou S, Gonen T, Goodlett DR, Goodman AL, Mougous JD
    Cell Host Microbe. 2014 Aug 13;16(2):227-36. doi: 10.1016/j.chom.2014.07.007

    Bacteroidetes are a phylum of Gram-negative bacteria abundant in mammalian-associated polymicrobial communities, where they impact digestion, immunity, and resistance to infection. Despite the extensive competition at high cell density that occurs in these settings, cell contact-dependent mechanisms of interbacterial antagonism, such as the type VI secretion system (T6SS), have not been defined in this group of organisms. Herein we report the bioinformatic and functional characterization of a T6SS-like pathway in diverse Bacteroidetes. Using prominent human gut commensal and soil-associated species, we demonstrate that these systems localize dynamically within the cell, export antibacterial proteins, and target competitor bacteria. The Bacteroidetes system is a distinct pathway with marked differences in gene content and high evolutionary divergence from the canonical T6S pathway. Our findings offer a potential molecular explanation for the abundance of Bacteroidetes in polymicrobial environments, the observed stability of Bacteroidetes in healthy humans, and the barrier presented by the microbiota against pathogens.

    View Publication Page
    Gonen Lab
    08/04/14 | Proton-coupled sugar transport in the prototypical major facilitator superfamily protein XylE.
    Wisedchaisri G, Park M, Iadanza MG, Zheng H, Gonen T
    Nature Communication. 2014 - Aug;5:4521. doi: 10.1038/ncomms5521

    The major facilitator superfamily (MFS) is the largest collection of structurally related membrane proteins that transport a wide array of substrates. The proton-coupled sugar transporter XylE is the first member of the MFS that has been structurally characterized in multiple transporting conformations, including both the outward and inward-facing states. Here we report the crystal structure of XylE in a new inward-facing open conformation, allowing us to visualize the rocker-switch movement of the N-domain against the C-domain during the transport cycle. Using molecular dynamics simulation, and functional transport assays, we describe the movement of XylE that facilitates sugar translocation across a lipid membrane and identify the likely candidate proton-coupling residues as the conserved Asp27 and Arg133. This study addresses the structural basis for proton-coupled substrate transport and release mechanism for the sugar porter family of proteins.

    View Publication Page