Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-BfUTt7484DSUmejmGh6NWRUlV0BgbVWM | block
facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-aK0bSsPXQOqhYQEgonL2xGNrv4SPvFLb | block
general_search_page-panel_pane_1 | views_panes

4772 Results

Showing 1161-1170 of 4772 results
Publications
03/07/16 | Data publication with the structural biology data grid supports live analysis.
Meyer PA, Socias S, Key J, Ransey E, Tjon EC, Buschiazzo A, Lei M, Botka C, Withrow J, Neau D, Rajashankar K, Anderson KS, Baxter RH, Blacklow SC, Boggon TJ, Bonvin AM, Borek D, Brett TJ, Caflisch A, Chang C, Chazin WJ, Corbett KD, Cosgrove MS, Crosson S, Dhe-Paganon S, Di Cera E, Drennan CL, Eck MJ, Eichman BF, Fan QR, Ferré-D'Amaré AR, Christopher Fromme J, Garcia KC, Gaudet R, Gong P, Harrison SC, Heldwein EE, Jia Z, Keenan RJ, Kruse AC, Kvansakul M, McLellan JS, Modis Y, Nam Y, Otwinowski Z, Pai EF, Pereira PJ, Petosa C, Raman CS, Rapoport TA, Roll-Mecak A, Rosen MK, Rudenko G, Schlessinger J, Schwartz TU, Shamoo Y, Sondermann H, Tao YJ, Tolia NH, Tsodikov OV, Westover KD, Wu H, Foster I, Fraser JS, Maia FR, Gonen T, Kirchhausen T, Diederichs K, Crosas M, Sliz P
Nature Communications. 2016 Mar 07;7:10882. doi: 10.1038/ncomms10882

Access to experimental X-ray diffraction image data is fundamental for validation and reproduction of macromolecular models and indispensable for development of structural biology processing methods. Here, we established a diffraction data publication and dissemination system, Structural Biology Data Grid (SBDG; data.sbgrid.org), to preserve primary experimental data sets that support scientific publications. Data sets are accessible to researchers through a community driven data grid, which facilitates global data access. Our analysis of a pilot collection of crystallographic data sets demonstrates that the information archived by SBDG is sufficient to reprocess data to statistics that meet or exceed the quality of the original published structures. SBDG has extended its services to the entire community and is used to develop support for other types of biomedical data sets. It is anticipated that access to the experimental data sets will enhance the paradigm shift in the community towards a much more dynamic body of continuously improving data analysis.

View Publication Page
Publications
09/07/24 | Data Release: High-Resolution Imaging and Segmentation of P7 Mouse Tissue Microarchitecture Using FIB-SEM and Machine Learning
Ackerman D, Avetissian E, Bleck CK, Bogovic JA, Innerberger M, Korff W, Li W, Lu Z, Petruncio A, Preibisch S, Qiu W, Rhoades J, Saalfeld S, Silva M, Trautman ET, Vorimo R, Weigel A, Yu Z, Zubov Y,
bioRxiv. 2024 Sep 07:. doi: 10.1101/2024.09.05.611438

This report presents a comprehensive data release exploring the tissue microarchitecture of P7 aged mice using Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) combined with machine learning-based segmentations of nuclei. The study includes high-resolution 3D volumes and nucleus segmentations for seven vital tissues—pancreas, liver, kidney, heart, thymus, hippocampus, and skin—from a single mouse. The detailed datasets are openly accessible on OpenOrganelle.org, providing a valuable resource for the scientific community to support further research and collaboration.

View Publication Page
Publications
06/19/07 | Data-driven decomposition for multi-class classification.
Zhou J, Peng H, Suen CY
Pattern Recognition. 2007 Jun 19;41:67-76. doi: 10.1016/j.patcog.2007.05.020

This paper presents a new study on a method of designing a multi-class classifier: Data-driven Error Correcting Output Coding (DECOC). DECOC is based on the principle of Error Correcting Output Coding (ECOC), which uses a code matrix to decompose a multi-class problem into multiple binary problems. ECOC for multi-class classification hinges on the design of the code matrix. We propose to explore the distribution of data classes and optimize both the composition and the number of base learners to design an effective and compact code matrix. Two real world applications are studied: (1) the holistic recognition (i.e., recognition without segmentation) of touching handwritten numeral pairs and (2) the classification of cancer tissue types based on microarray gene expression data. The results show that the proposed DECOC is able to deliver competitive accuracy compared with other ECOC methods, using parsimonious base learners than the pairwise coupling (one-vs-one) decomposition scheme. With a rejection scheme defined by a simple robustness measure, high reliabilities of around 98% are achieved in both applications.

View Publication Page
People
David Ackerman
Senior Software Engineer
People
David Clapham
Senior Group Leader
People
David Schauder
Senior Software Engineer
People
David Stern
Senior Group Leader
People
David Wong-Campos
Group Leader