Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hess Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

79 Publications

Showing 51-60 of 79 results
09/01/23 | Multiscale head anatomy of Megaphragma (Hymenoptera: Trichogrammatidae).
Desyatirkina IA, Makarova AA, Pang S, Xu CS, Hess H, Polilov AA
Arthropod Structure and Development. 2023 Sep 01;76:101299. doi: 10.1016/j.asd.2023.101299

Methods of three-dimensional electron microscopy have been actively developed recently and open up great opportunities for morphological work. This approach is especially useful for studying microinsects, since it is possible to obtain complete series of high-resolution sections of a whole insect. Studies on the genus Megaphragma are especially important, since the unique phenomenon of lysis of most of the neuron nuclei was discovered in species of this genus. In this study we reveal the anatomical structure of the head of Megaphragma viggianii at all levels from organs to subcellular structures. Despite the miniature size of the body, most of the organ systems of M. viggianii retain the structural plan and complexity of organization at all levels. The set of muscles and the well-developed stomatogastric nervous system of this species correspond to those of larger insects, and there is also a well-developed tracheal system in the head of this species. Reconstructions of the head of M. viggianii at the cellular and subcellular levels were obtained, and of volumetric data were analyzed. A total of 689 nucleated cells of the head were reconstructed. The ultrastructure of M. viggianii is surprisingly complex, and the evolutionary benefits of such complexity are probably among the factors limiting the further miniaturization of parasitoid wasps.

View Publication Page
11/25/10 | Nanoscale architecture of integrin-based cell adhesions.
Kanchanawong P, Shtengel G, Pasapera AM, Ramko EB, Davidson MW, Hess HF, Waterman CM
Nature. 2010 Nov 25;468(7323):580-4. doi: 10.1038/nature09621

Cell adhesions to the extracellular matrix (ECM) are necessary for morphogenesis, immunity, and wound healing. Focal adhesions are multifunctional organelles that mediate cell-ECM adhesion, force transmission, cytoskeletal regulation and signaling. Focal adhesions consist of a complex network of trans-plasma-membrane integrins and cytoplasmic proteins that form a <200-nm plaque linking the ECM to the actin cytoskeleton. The complexity of focal adhesion composition and dynamics implicate an intricate molecular machine. However, focal adhesion molecular architecture remains unknown. Here we used three-dimensional super-resolution fluorescence microscopy (interferometric photoactivated localization microscopy) to map nanoscale protein organization in focal adhesions. Our results reveal that integrins and actin are vertically separated by a \~{}40-nm focal adhesion core region consisting of multiple protein-specific strata: a membrane-apposed integrin signaling layer containing integrin cytoplasmic tails, focal adhesion kinase, and paxillin; an intermediate force-transduction layer containing talin and vinculin; and an uppermost actin-regulatory layer containing zyxin, vasodilator-stimulated phosphoprotein and α-actinin. By localizing amino- and carboxy-terminally tagged talins, we reveal talin’s polarized orientation, indicative of a role in organizing the focal adhesion strata. The composite multilaminar protein architecture provides a molecular blueprint for understanding focal adhesion functions.

View Publication Page
06/17/94 | Near-field spectroscopy of the quantum constituents of a luminescent system.
Hess HF, Betzig E, Harris TD, Pfeiffer LN, West KW
Science. 1994 Jun 17;264(5166):1740-5. doi: 10.1126/science.264.5166.1740

Luminescent centers with sharp (<0.07 millielectron volt), spectrally distinct emission lines were imaged in a GaAs/AIGaAs quantum well by means of low-temperature near-field scanning optical microscopy. Temperature, magnetic field, and linewidth measurements establish that these centers arise from excitons laterally localized at interface fluctuations. For sufficiently narrow wells, virtually all emission originates from such centers. Near-field microscopy/spectroscopy provides a means to access energies and homogeneous line widths for the individual eigenstates of these centers, and thus opens a rich area of physics involving quantum resolved systems.

View Publication Page
06/17/94 | Near-field spectroscopy of the quantum constituents of a luminescent system. (With commentary)
Hess HF, Betzig E, Harris TD, Pfeiffer LN, West KW
Science. 1994 Jun 17;264(5166):1740-5. doi: 10.1126/science.264.5166.1740

Luminescent centers with sharp (<0.07 millielectron volt), spectrally distinct emission lines were imaged in a GaAs/AIGaAs quantum well by means of low-temperature near-field scanning optical microscopy. Temperature, magnetic field, and linewidth measurements establish that these centers arise from excitons laterally localized at interface fluctuations. For sufficiently narrow wells, virtually all emission originates from such centers. Near-field microscopy/spectroscopy provides a means to access energies and homogeneous line widths for the individual eigenstates of these centers, and thus opens a rich area of physics involving quantum resolved systems.

Commentary: Harald Hess and I joined forces, combining my near-field optical technology with his cryogenic scanned probe microscope to produce the first paper on high resolution spectroscopy beyond the diffraction limit. We discovered that the broad luminescence spectrum traditionally observed from quantum well heterostructures reflects a resolution-limited ensemble average of emission from numerous discrete sites of exciton recombination occurring at atomic-scale corrugations in the confining interfaces. With the combination of high spatial resolution from near-field excitation and high spectral resolution from cryogenic operation, we were able to isolate these emission sites in a multidimensional space of xy position and wavelength, even though their density was too great to isolate them on the basis of spatial resolution alone. This insight was very influential in the genesis of the concept (see above) that would eventually lead to far-field superresolution by PALM.

View Publication Page
05/30/19 | Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity.
Ioannou MS, Jackson J, Sheu S, Chang C, Weigel AV, Liu H, Pasolli HA, Xu CS, Pang S, Matthies D, Hess HF, Lippincott-Schwartz J, Liu Z
Cell. 2019 May 30;177(6):1522-1535.e14. doi: 10.1016/j.cell.2019.04.001

Metabolic coordination between neurons and astrocytes is critical for the health of the brain. However, neuron-astrocyte coupling of lipid metabolism, particularly in response to neural activity, remains largely uncharacterized. Here, we demonstrate that toxic fatty acids (FAs) produced in hyperactive neurons are transferred to astrocytic lipid droplets by ApoE-positive lipid particles. Astrocytes consume the FAs stored in lipid droplets via mitochondrial β-oxidation in response to neuronal activity and turn on a detoxification gene expression program. Our findings reveal that FA metabolism is coupled in neurons and astrocytes to protect neurons from FA toxicity during periods of enhanced activity. This coordinated mechanism for metabolizing FAs could underlie both homeostasis and a variety of disease states of the brain.

View Publication Page
01/23/23 | Periodic ER-plasma membrane junctions support long-range Ca signal integration in dendrites.
Benedetti L, Fan R, Weigel AV, Moore AS, Houlihan PR, Kittisopikul M, Park G, Petruncio A, Hubbard PM, Pang S, Xu CS, Hess HF, Saalfeld S, Rangaraju V, Clapham DE, De Camilli P, Ryan TA, Lippincott-Schwartz J
Cell. 01/2025;188(2):484-500.e22. doi: 10.1016/j.cell.2024.11.029

Neuronal dendrites must relay synaptic inputs over long distances, but the mechanisms by which activity-evoked intracellular signals propagate over macroscopic distances remain unclear. Here, we discovered a system of periodically arranged endoplasmic reticulum-plasma membrane (ER-PM) junctions tiling the plasma membrane of dendrites at ∼1 μm intervals, interlinked by a meshwork of ER tubules patterned in a ladder-like array. Populated with Junctophilin-linked plasma membrane voltage-gated Ca channels and ER Ca-release channels (ryanodine receptors), ER-PM junctions are hubs for ER-PM crosstalk, fine-tuning of Ca homeostasis, and local activation of the Ca/calmodulin-dependent protein kinase II. Local spine stimulation activates the Ca modulatory machinery, facilitating signal transmission and ryanodine-receptor-dependent Ca release at ER-PM junctions over 20 μm away. Thus, interconnected ER-PM junctions support signal propagation and Ca release from the spine-adjacent ER. The capacity of this subcellular architecture to modify both local and distant membrane-proximal biochemistry potentially contributes to dendritic computations.

View Publication Page
02/25/21 | Protocol for preparation of heterogeneous biological samples for 3D electron microscopy: a case study for insects.
Polilov AA, Makarova AA, Pang S, Shan Xu C, Hess H
Scientific Reports. 2021 Feb 25;11(1):4717. doi: 10.1038/s41598-021-83936-0

Modern morphological and structural studies are coming to a new level by incorporating the latest methods of three-dimensional electron microscopy (3D-EM). One of the key problems for the wide usage of these methods is posed by difficulties with sample preparation, since the methods work poorly with heterogeneous (consisting of tissues different in structure and in chemical composition) samples and require expensive equipment and usually much time. We have developed a simple protocol allows preparing heterogeneous biological samples suitable for 3D-EM in a laboratory that has a standard supply of equipment and reagents for electron microscopy. This protocol, combined with focused ion-beam scanning electron microscopy, makes it possible to study 3D ultrastructure of complex biological samples, e.g., whole insect heads, over their entire volume at the cellular and subcellular levels. The protocol provides new opportunities for many areas of study, including connectomics.

View Publication Page
03/09/22 | Regulation of liver subcellular architecture controls metabolic homeostasis.
Parlakgül G, Arruda AP, Pang S, Cagampan E, Min N, Güney E, Lee GY, Inouye K, Hess HF, Xu CS, Hotamışlıgil GS
Nature. 2022 Mar 09;603(7902):736-742. doi: 10.1038/s41586-022-04488-5

Cells display complex intracellular organization by compartmentalization of metabolic processes into organelles, yet the resolution of these structures in the native tissue context and their functional consequences are not well understood. Here we resolved the three-dimensional structural organization of organelles in large (more than 2.8 × 10 µm) volumes of intact liver tissue (15 partial or full hepatocytes per condition) at high resolution (8 nm isotropic pixel size) using enhanced focused ion beam scanning electron microscopy imaging followed by deep-learning-based automated image segmentation and 3D reconstruction. We also performed a comparative analysis of subcellular structures in liver tissue of lean and obese mice and found substantial alterations, particularly in hepatic endoplasmic reticulum (ER), which undergoes massive structural reorganization characterized by marked disorganization of stacks of ER sheets and predominance of ER tubules. Finally, we demonstrated the functional importance of these structural changes by monitoring the effects of experimental recovery of the subcellular organization on cellular and systemic metabolism. We conclude that the hepatic subcellular organization of the ER architecture are highly dynamic, integrated with the metabolic state and critical for adaptive homeostasis and tissue health.

View Publication Page
03/19/08 | Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling.
Knott G, Marchman H, Wall D, Lich B
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2008 Mar 19;28(12):2959-64. doi: 10.1523/JNEUROSCI.3189-07.2008
10/09/25 | Sexual dimorphism in the complete connectome of the <I>Drosophila</I> male central nervous system
Berg S, Beckett IR, Costa M, Schlegel P, Januszewski M, Marin EC, Nern A, Preibisch S, Qiu W, Takemura S, Fragniere AM, Champion AS, Adjavon D, Cook M, Gkantia M, Hayworth KJ, Huang GB, Katz WT, Kämpf F, Lu Z, Ordish C, Paterson T, Stürner T, Trautman ET, Whittle CR, Burnett LE, Hoeller J, Li F, Loesche F, Morris BJ, Pietzsch T, Pleijzier MW, Silva V, Yin Y, Ali I, Badalamente G, Bates AS, Bogovic J, Brooks P, Cachero S, Canino BS, Chaisrisawatsuk B, Clements J, Crowe A, de Haan Vicente I, Dempsey G, Donà E, dos Santos M, Dreher M, Dunne CR, Eichler K, Finley-May S, Flynn MA, Hameed I, Hopkins GP, Hubbard PM, Kiassat L, Kovalyak J, Lauchie SA, Leonard M, Lohff A, Longden KD, Maldonado CA, Mitletton M, Moitra I, Moon SS, Mooney C, Munnelly EJ, Okeoma N, Olbris DJ, Pai A, Patel B, Phillips EM, Plaza SM, Richards A, Rivas Salinas J, Roberts RJ, Rogers EM, Scott AL, Scuderi LA, Seenivasan P, Serratosa Capdevila L, Smith C, Svirskas R, Takemura S, Tastekin I, Thomson A, Umayam L, Walsh JJ, Whittome H, Xu CS, Yakal EA, Yang T, Zhao A, George R, Jain V, Jayaraman V, Korff W, Meissner GW, Romani S, Funke J, Knecht C, Saalfeld S, Scheffer LK, Waddell S, Card GM, Ribeiro C, Reiser MB, Hess HF, Rubin GM, Jefferis GS
bioRxiv. 2025 Oct 09:. doi: 10.1101/2025.10.09.680999

Sex differences in behaviour exist across the animal kingdom, typically under strong genetic regulation. In Drosophila, previous work has shown that fruitless and doublesex transcription factors identify neurons driving sexually dimorphic behaviour. However, the organisation of dimorphic neurons into functional circuits remains unclear.We now present the connectome of the entire Drosophila male central nervous system. This contains 166,691 neurons spanning the brain and ventral nerve cord, fully proofread and comprehensively annotated including fruitless and doublesex expression and 11,691 cell types. By comparison with a previous female brain connectome, we provide the first comprehensive description of the differences between male and female brains to synaptic resolution. Of 7,319 cross-matched cell types in the central brain, 114 are dimorphic with an additional 262 male- and 69 female-specific (totalling 4.8% of neurons in males and 2.4% in females).This resource enables analysis of full sensory-to-motor circuits underlying complex behaviours as well as the impact of dimorphic elements. Sex-specific and dimorphic neurons are concentrated in higher brain centres while the sensory and motor periphery are largely isomorphic. Within higher centres, male-specific connections are organised into hotspots defined by male-specific neurons or the presence of male-specific arbours on neurons that are otherwise similar between sexes. Numerous circuit switches reroute sensory information to form conserved, antagonistic circuits controlling opposing behaviours.

View Publication Page