Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Huston Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block

Type of Publication

general_search_page-panel_pane_1 | views_panes

18 Publications

Showing 1-10 of 18 results
Your Criteria:
    Magee Lab
    01/01/03 | A prominent role for intrinsic neuronal properties in temporal coding.
    Magee JC
    Trends in Neurosciences. 2003 Jan;26(1):14-6. doi: 10.1002/cbic.201000254

    A recent report presents evidence that the exact timing of action potential output in rat hippocampal pyramidal neurons is similarly modulated during several diverse forms of behavior. These data suggest that it is, to a large degree, the intrinsic properties of the neurons themselves that produce this temporal coding of information. Thus, this report provides an outstanding example of the importance of single neuronal properties, even during complex behaviors.

    View Publication Page
    Magee Lab
    03/01/06 | A systematic model to predict transcriptional regulatory mechanisms based on overrepresentation of transcription factor binding profiles.
    Chang L, Nagarajan R, Magee JA, Milbrandt J, Stormo GD
    Genome Research. 2006 Mar;16(3):405-13. doi: 10.1002/cbic.201000254

    An important aspect of understanding a biological pathway is to delineate the transcriptional regulatory mechanisms of the genes involved. Two important tasks are often encountered when studying transcription regulation, i.e., (1) the identification of common transcriptional regulators of a set of coexpressed genes; (2) the identification of genes that are regulated by one or several transcription factors. In this study, a systematic and statistical approach was taken to accomplish these tasks by establishing an integrated model considering all of the promoters and characterized transcription factors (TFs) in the genome. A promoter analysis pipeline (PAP) was developed to implement this approach. PAP was tested using coregulated gene clusters collected from the literature. In most test cases, PAP identified the transcription regulators of the input genes accurately. When compared with chromatin immunoprecipitation experiment data, PAP’s predictions are consistent with the experimental observations. When PAP was used to analyze one published expression-profiling data set and two novel coregulated gene sets, PAP was able to generate biologically meaningful hypotheses. Therefore, by taking a systematic approach of considering all promoters and characterized TFs in our model, we were able to make more reliable predictions about the regulation of gene expression in mammalian organisms.

    View Publication Page
    Magee Lab
    05/01/07 | Associative pairing enhances action potential back-propagation in radial oblique branches of CA1 pyramidal neurons.
    Gasparini S, Losonczy A, Chen X, Johnston D, Magee JC
    The Journal of Physiology. 2007 May 1;580(Pt.3):787-800. doi: 10.1002/cbic.201000254

    Back-propagating action potentials (bAPs) are involved in associative synaptic plasticity and the modulation of dendritic excitability. We have used high-speed confocal and two-photon imaging to measure calcium and voltage signals associated with action potential propagation into oblique branches of CA1 pyramidal neurons in adult hippocampal slices. The spatial profile of the bAP-associated Ca(2+) influx was biphasic, with an initial increase in the proximity of the branch point followed by a progressive decrease. Voltage imaging in the branches showed that bAP amplitude was initially constant and then steadily declined with distance from the soma. To determine the role of transient K(+) channels in this profile, we used external Ba(2+) (150 microm) as a channel blocker, after characterizing its effect on A-type K(+) channels in the apical trunk. Bath application of Ba(2+) significantly reduced the A-type K(+) current in outside-out patches and nearly eliminated the distance-dependent decrease in bAP amplitude and its associated Ca(2+) signal. Finally, small amplitude bAPs at more distal oblique branch locations could be boosted by simultaneous branch depolarization, such that the paired Ca(2+) signal became nearly the same for proximal and distal oblique dendrites. These data suggest that dendritic K(+) channels regulate the amplitude of bAPs to create a dendritic Ca(2+) signal whose magnitude is inversely related to the electrotonic distance from the soma when bAPs are not associated with a significant amount of localized synaptic input. This distance-dependent Ca(2+) signal from bAPs, however, can be amplified and a strong associative signal is produced once the proper correlation between synaptic activation and AP output is achieved. We hypothesize that these two signals may be involved in the regulation of the expression and activity of dendritic voltage- and ligand-gated ion channels.

    View Publication Page
    Magee Lab
    09/01/04 | Changes in AMPA receptor currents following LTP induction on rat CA1 pyramidal neurones.
    Andrasfalvy BK, Magee JC
    The Journal of Physiology. 2004 Sep 1;559(Pt 2):543-54. doi: 10.1002/cbic.201000254

    In the CA1 region of the hippocampus, LTP is thought to be initiated by a transient activation of NMDA receptors and is expressed as a persistent increase in synaptic transmission through AMPA receptors. To investigate the postsynaptic modifications of AMPA receptors involved in this enhanced synaptic transmission, the channel density and single-channel properties of extrasynaptic AMPA receptors located in synaptically active dendritic regions were examined following the induction of LTP. Following tetanic stimulation an outside-out patch was excised from the apical dendrite near the point of stimulation and saturating concentrations of glutamate were rapidly applied to the patch. AMPA current amplitude and duration were increased significantly in patches pulled from dendrites that expressed LTP. Non-stationary fluctuation analysis of AMPA currents indicated that AMPA channel number was nearly twofold larger than in controls, while single channel conductance and maximum open-probability were unchanged. Furthermore, while subtle changes in AMPA channel kinetics could also be observed, we did not find any evidence that receptor affinity or rectification properties were altered by LTP induction. Very similar results were found when CaMK-II activity was increased through the intracellular application of Ca/CaM. Together, we interpret our data to indicate that the stimuli used here produce an increased delivery of AMPA receptors to synaptically active regions of the apical dendrite without inducing any significant changes in their basic biophysical properties and that such delivery is a key element in this form of synaptic plasticity.

    View Publication Page
    Magee Lab
    03/01/02 | Conditional loss of Nkx3.1 in adult mice induces prostatic intraepithelial neoplasia.
    Abdulkadir SA, Magee JA, Peters TJ, Kaleem Z, Naughton CK, Humphrey PA, Milbrandt J
    Molecular and Cellular Biology. 2002 Mar;22(5):1495-503. doi: 10.1002/cbic.201000254

    The homeodomain-containing transcription factor NKX3.1 is a putative prostate tumor suppressor that is expressed in a largely prostate-specific and androgen-regulated manner. Loss of NKX3.1 protein expression is common in human prostate carcinomas and prostatic intraepithelial neoplasia (PIN) lesions and correlates with tumor progression. Disruption of the murine Nkx3.1 gene results in defects in prostate branching morphogenesis, secretions, and growth. To more closely mimic the pattern of NKX3.1 loss that occurs in human prostate tumors, we have used Cre- and loxP-mediated recombination to delete the Nkx3.1 gene in the prostates of adult transgenic mice. Conditional deletion of one or both alleles of Nkx3.1 leads to the development of preinvasive lesions that resemble PIN. The pattern of expression of several biomarkers (Ki-67, E-cadherin, and high-molecular-weight cytokeratins) in these PIN lesions resembled that observed in human cases of PIN. Furthermore, PIN foci in mice with conditional deletion of a single Nkx3.1 allele lose expression of the wild-type allele. Our results support the role of NKX3.1 as a prostate tumor suppressor and indicate a role for this gene in tumor initiation.

    View Publication Page
    Magee Lab
    01/06/06 | Direct, androgen receptor-mediated regulation of the FKBP5 gene via a distal enhancer element.
    Magee JA, Chang L, Stormo GD, Milbrandt J
    Endocrinology. 2006 Jan 6;147(1):590-8. doi: 10.1002/cbic.201000254

    Androgen signaling via the androgen receptor (AR) transcription factor is crucial to normal prostate homeostasis and prostate tumorigenesis. Current models of AR function are predominantly based on studies of prostate-specific antigen regulation in androgen-responsive cell lines. To expand on these in vitro paradigms, we used the mouse prostate to elucidate the mechanisms through which AR regulates another direct target, FKBP5, in vivo. FKBP5 encodes an immunophilin that has been previously implicated in glucocorticoid and progestin signaling pathways and that likely influences prostate physiology in the presence of androgens. In this work, we show that androgens directly regulate FKBP5 via an interaction between the AR and a distal enhancer located 65 kb downstream of the transcription start site in the fifth intron of the FKBP5 gene. We have found that AR selectively recruits cAMP response element-binding protein to this enhancer. These interactions, in turn, result in chromatin remodeling that affects the enhancer proper but not the FKBP5 locus as a whole. Furthermore, in contrast to prostate-specific antigen-regulatory mechanisms, we show that transactivation of the FKBP5 gene does not rely on a single looping complex to mediate communication between the distal enhancer and proximal promoter. Rather, the distal enhancer complex and basal transcription apparatus communicate indirectly with one another, implicating a regulatory mechanism that has not been previously appreciated for AR target genes.

    View Publication Page
    Magee Lab
    03/01/03 | Haploinsufficiency at the Nkx3.1 locus. A paradigm for stochastic, dosage-sensitive gene regulation during tumor initiation.
    Magee JA, Abdulkadir SA, Milbrandt J
    Cancer Cell. 2003 Mar;3(3):273-83. doi: 10.1002/cbic.201000254

    Tumorigenesis requires sequential accumulation of multiple genetic lesions. In the prostate, tumor initiation is often linked to loss of heterozygosity at the Nkx3.1 locus. In mice, loss of even one Nkx3.1 allele causes prostatic epithelial hyperplasia and eventual prostatic intraepithelial neoplasia (PIN) formation. Here we demonstrate that Nkx3.1 allelic loss extends the proliferative stage of regenerating luminal cells, leading to epithelial hyperplasia. Microarray analysis identified Nkx3.1 target genes, many of which show exquisite dosage sensitivity. The number of Nkx3.1 alleles determines the relative probabilities of stochastic activation or inactivation of a given target gene. Thus, loss of a single Nkx3.1 allele likely results in hyperplasia and PIN by increasing the probability of completely inactivating select Nkx3.1-regulated pathways within a subset of affected cells.

    View Publication Page
    Magee Lab
    10/01/03 | Impaired regulation of synaptic strength in hippocampal neurons from GluR1-deficient mice.
    Andrasfalvy BK, Smith MA, Borchardt T, Sprengel R, Magee JC
    The Journal of Physiology. 2003 Oct 1;552(Pt 1):35-45. doi: 10.1002/cbic.201000254

    Neurons of the central nervous system (CNS) exhibit a variety of forms of synaptic plasticity, including associative long-term potentiation and depression (LTP/D), homeostatic activity-dependent scaling and distance-dependent scaling. Regulation of synaptic neurotransmitter receptors is currently thought to be a common mechanism amongst many of these forms of plasticity. In fact, glutamate receptor 1 (GluR1 or GluRA) subunits containing L-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors have been shown to be required for several forms of hippocampal LTP and a particular hippocampal-dependent learning task. Because of this importance in associative plasticity, we sought to examine the role of these receptors in other forms of synaptic plasticity in the hippocampus. To do so, we recorded from the apical dendrites of hippocampal CA1 pyramidal neurons in mice lacking the GluR1 subunit (GluR1 -/-). Here we report data from outside-out patches that indicate GluR1-containing receptors are essential to the extrasynaptic population of AMPA receptors, as this pool was nearly empty in the GluR1 -/- mice. Additionally, these receptors appear to be a significant component of the synaptic glutamate receptor pool because the amplitude of spontaneous synaptic currents recorded at the site of input and synaptic AMPA receptor currents evoked by focal glutamate uncaging were both substantially reduced in these mice. Interestingly, the impact on synaptic weight was greatest at distant synapses such that the normal distance-dependent synaptic scaling used by these cells to counter dendritic attenuation was lacking in GluR1 -/- mice. Together the data suggest that the highly regulated movement of GluR1-containing AMPA receptors between extrasynaptic and synaptic receptor pools is critically involved in establishing two functionally diverse forms of synaptic plasticity: LTP and distance-dependent scaling.

    View Publication Page
    Magee Lab
    04/20/06 | Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons.
    Losonczy A, Magee JC
    Neuron. 2006 Apr 20;50(2):291-307. doi: 10.1016/j.neuron.2006.03.016

    Although radial oblique dendrites are a major synaptic input site in CA1 pyramidal neurons, little is known about their integrative properties. We have used multisite two-photon glutamate uncaging to deliver different spatiotemporal input patterns to single branches while simultaneously recording the uncaging-evoked excitatory postsynaptic potentials and local Ca2+ signals. Asynchronous input patterns sum linearly in spite of the spatial clustering and produce Ca2+ signals that are mediated by NMDA receptors (NMDARs). Appropriately timed and sized input patterns ( approximately 20 inputs within approximately 6 ms) produce a supralinear summation due to the initiation of a dendritic spike. The Ca2+ signals associated with synchronous input were larger and mediated by influx through both NMDARs and voltage-gated Ca2+ channels (VGCCs). The oblique spike is a fast Na+ spike whose duration is shaped by the coincident activation of NMDAR, VGCCs, and transient K+ currents. Our results suggest that individual branches can function as single integrative compartments.

    View Publication Page
    Magee Lab
    02/01/04 | LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites.
    Frick A, Magee J, Johnston D
    Nature Neuroscience. 2004 Feb;7(2):126-35. doi: 10.1002/cbic.201000254

    The propagation and integration of signals in the dendrites of pyramidal neurons is regulated, in part, by the distribution and biophysical properties of voltage-gated ion channels. It is thus possible that any modification of these channels in a specific part of the dendritic tree might locally alter these signaling processes. Using dendritic and somatic whole-cell recordings, combined with calcium imaging in rat hippocampal slices, we found that the induction of long-term potentiation (LTP) was accompanied by a local increase in dendritic excitability that was dependent on the activation of NMDA receptors. These changes favored the back-propagation of action potentials into this dendritic region with a subsequent boost in the Ca(2+) influx. Dendritic cell-attached patch recordings revealed a hyperpolarized shift in the inactivation curve of transient, A-type K(+) currents that can account for the enhanced excitability. These results suggest an important mechanism associated with LTP for shaping signal processing and controlling dendritic function.

    View Publication Page