Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Huston Lab / Publications
general_search_page-panel_pane_1 | views_panes

18 Publications

Showing 11-18 of 18 results
Your Criteria:
    12/01/95 | Regulation of nuclear genes encoding mitochondrial proteins in Saccharomyces cerevisiae.
    Brown TA, Evangelista C, Trumpower BL
    Journal of Bacteriology. 1995 Dec;177(23):6836-43

    Selection for mutants which release glucose repression of the CYB2 gene was used to identify genes which regulate repression of mitochondrial biogenesis. We have identified two of these as the previously described GRR1/CAT80 and ROX3 genes. Mutations in these genes not only release glucose repression of CYB2 but also generally release respiration of the mutants from glucose repression. In addition, both mutants are partially defective in CYB2 expression when grown on nonfermentable carbon sources, indicating a positive regulatory role as well. ROX3 was cloned by complementation of a glucose-inducible flocculating phenotype of an amber mutant and has been mapped as a new leftmost marker on chromosome 2. The ROX3 mutant has only a modest defect in glucose repression of GAL1 but is substantially compromised in galactose induction of GAL1 expression. This mutant also has increased SUC2 expression on nonrepressing carbon sources. We have also characterized the regulation of CYB2 in strains carrying null mutation in two other glucose repression genes, HXK2 and SSN6, and show that HXK2 is a negative regulator of CYB2, whereas SSN6 appears to be a positive effector of CYB2 expression.

    View Publication Page
    12/01/95 | Role of the morphogenetic furrow in establishing polarity in the Drosophila eye.
    Chanut F, Heberlein U
    Development. 1995 Dec;121(12):4085-94

    The Drosophila retina is a crystalline array of 800 ommatidia whose organization and assembly suggest polarization of the retinal epithelium along anteroposterior and dorsoventral axes. The retina develops by a stepwise process following the posterior-to-anterior progression of the morphogenetic furrow across the eye disc. Ectopic expression of hedgehog or local removal of patched function generates ectopic furrows that can progress in any direction across the disc leaving in their wake differentiating fields of ectopic ommatidia. We have studied the effect of these ectopic furrows on the polarity of ommatidial assembly and rotation. We find that the anteroposterior asymmetry of ommatidial assembly parallels the progression of ectopic furrows, regardless of their direction. In addition, ommatidia developing behind ectopic furrows rotate coordinately, forming equators in various regions of the disc. Interestingly, the expression of a marker normally restricted to the equator is induced in ectopic ommatidial fields. Ectopic equators are stable as they persist to adulthood, where they can coexist with the normal equator. Our results suggest that ectopic furrows can impart polarity to the disc epithelium, regarding the direction of both assembly and rotation of ommatidia. We propose that these processes are polarized as a consequence of furrow propagation, while more global determinants of dorsoventral and anteroposterior polarity may act less directly by determining the site of furrow initiation.

    View Publication Page
    03/01/95 | Strain-dependent variation in carbon source regulation of nucleus-encoded mitochondrial proteins of Saccharomyces cerevisiae.
    Brown TA, Trumpower BL
    Journal of Bacteriology. 1995 Mar;177(5):1380-2

    Nuclear genes encoding mitochondrial proteins are regulated by carbon source with significant heterogeneity among four Saccharomyces cerevisiae strains. This strain-dependent variation is seen both in respiratory capacity of the cells and in the expression of beta-galactosidase reporter fusions to the promoters of CYB2, CYC1, CYC3, MnSOD, and RPO41.

    View Publication Page

    We describe the life cycle and general biology of the tropical cerataphidine aphid Cerataphis fransseni. We demonstrate that this aphid migrates between trees of Styrax benzoin and various species of palms; palm-feeding populations have previously been known as C. variabilis and C. palmae, which now become synonyms of C. fransseni. On S. benzoin the fundatrix induces a relatively simple gall which can contain >6000 aphids at maturity with a large number of reproductively sterile soldiers that protect the gall from predators. These galls are apparently produced throughout the year. Colonies on the secondary host plants, palms, are apparently obligately tended by ants whereas colonies within galls on Styrax are never tended by ants. We discuss the life cycle of this tropical aphid with respect to hypotheses for the evolution and maintenance of host alternation.

    View Publication Page
    Baker Lab

    In Drosophila dosage compensation increases the rate of transcription of the male's X chromosome and depends on four autosomal male-specific lethal genes. We have cloned the msl-2 gene and shown that MSL-2 protein is co-localized with the other three MSL proteins at hundreds of sites along the male polytene X chromosome and that this binding requires the other three MSL proteins. msl-2 encodes a protein with a putative DNA-binding domain: the RING finger. MSL-2 protein is not produced in females and sequences in both the 5' and 3' UTRs are important for this sex-specific regulation. Furthermore, msl-2 pre-mRNA is alternatively spliced in a Sex-lethal-dependent fashion in its 5' UTR.

    View Publication Page
    Egnor Lab
    12/01/95 | The uncertain response in the bottlenosed dolphin (Tursiops truncatus).
    Smith JD, Schull J, Strote J, McGee K, Egnor R, Erb L
    Journal of Experimental Psychology. 1995 Dec;124(4):391-408

    Humans respond adaptively to uncertainty by escaping or seeking additional information. To foster a comparative study of uncertainty processes, we asked whether humans and a bottlenosed dolphin (Tursiops truncatus) would use similarly a psychophysical uncertain response. Human observers and the dolphin were given 2 primary discrimination responses and a way to escape chosen trials into easier ones. Humans escaped sparingly from the most difficult trials near threshold that left them demonstrably uncertain of the stimulus. The dolphin performed nearly identically. The behavior of both species is considered from the perspectives of signal detection theory and optimality theory, and its appropriate interpretation is discussed. Human and dolphin uncertain responses seem to be interesting cognitive analogs and may depend on cognitive or controlled decisional mechanisms. The capacity to monitor ongoing cognition, and use uncertainty appropriately, would be a valuable adaptation for animal minds. This recommends uncertainty processes as an important but neglected area for future comparative research.

    View Publication Page
    07/01/95 | Toward simplifying and accurately formulating fragment assembly.
    Myers EW
    Journal of Computational Biology: A Journal of Computational Molecular Cell Biology. 1995 Summer;2(2):275-90

    The fragment assembly problem is that of reconstructing a DNA sequence from a collection of randomly sampled fragments. Traditionally, the objective of this problem has been to produce the shortest string that contains all the fragments as substrings, but in the case of repetitive target sequences this objective produces answers that are overcompressed. In this paper, the problem is reformulated as one of finding a maximum-likelihood reconstruction with respect to the two-sided Kolmogorov-Smirnov statistic, and it is argued that this is a better formulation of the problem. Next the fragment assembly problem is recast in graph-theoretic terms as one of finding a noncyclic subgraph with certain properties and the objectives of being shortest or maximally likely are also recast in this framework. Finally, a series of graph reduction transformations are given that dramatically reduce the size of the graph to be explored in practical instances of the problem. This reduction is very important as the underlying problems are NP-hard. In practice, the transformed problems are so small that simple branch-and-bound algorithms successfully solve them, thus permitting auxiliary experimental information to be taken into account in the form of overlap, orientation, and distance constraints.

    View Publication Page
    06/16/95 | Yan functions as a general inhibitor of differentiation and is negatively regulated by activation of the Ras1/MAPK pathway.
    Rebay I, Rubin GM
    Cell. 1995 Jun 16;81(6):857-66. doi: 10.1186/gb-2007-8-7-r145

    Drosophila yan has been postulated to act as an antagonist of the proneural signal mediated by the sevenless/Ras1/MAPK pathway. We have mutagenized the eight MAPK phosphorylation consensus sites of yan and examined the effects of overexpressing the mutant protein in transgenic flies and transfected S2 cultured cells. Our results suggest that phosphorylation by MAPK affects the stability and subcellular localization of yan, resulting in rapid down-regulation of yan activity. Furthermore, MAPK-mediated down-regulation of yan function appears to be critical for the proper differentiation of both neuronal and nonneuronal tissues throughout development, suggesting that yan is an essential component of a general timing mechanism controlling the competence of a cell to respond to inductive signals.

    View Publication Page