Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Huston Lab / Publications
general_search_page-panel_pane_1 | views_panes

18 Publications

Showing 1-10 of 18 results
Your Criteria:
    01/01/95 | A persistent RNA-DNA hybrid is formed during transcription at a phylogenetically conserved mitochondrial DNA sequence.
    Xu B, Clayton DA
    Molecular and Cellular Biology. 1995 Jan;15(1):580-9. doi: 10.1101/gad.1352105

    Critical features of the mitochondrial leading-strand DNA replication origin are conserved from Saccharomyces cerevisiae to humans. These include a promoter and a downstream GC-rich sequence block (CSBII) that encodes rGs within the primer RNA. During in vitro transcription at yeast mitochondrial replication origins, there is stable and persistent RNA-DNA hybrid formation that begins at the 5’ end of the rG region. The short rG-dC sequence is the necessary and sufficient nucleic acid element for establishing stable hybrids, and the presence of rGs within the RNA strand of the RNA-DNA hybrid is required. The efficiency of hybrid formation depends on the length of RNA synthesized 5’ to CSBII and the type of RNA polymerase employed. Once made, the RNA strand of an RNA-DNA hybrid can serve as an effective primer for mitochondrial DNA polymerase. These results reveal a new mechanism for persistent RNA-DNA hybrid formation and suggest a step in priming mitochondrial DNA replication that requires both mitochondrial RNA polymerase and an rG-dC sequence-specific event to form an extensive RNA-DNA hybrid.

    View Publication Page
    04/14/95 | Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites.
    Spruston N, Schiller Y, Stuart G, Sakmann B
    Science. 1995 Apr 14;268(5208):297-300

    The temporal and spatial profile of activity-evoked changes in membrane potential and intracellular calcium concentration in the dendrites of hippocampal CA1 pyramidal neurons was examined with simultaneous somatic and dendritic patch-pipette recording and calcium imaging experiments. Action potentials are initiated close to the soma of these neurons and backpropagate into the dendrites in an activity-dependent manner; those occurring early in a train propagate actively, whereas those occurring later fail to actively invade the distal dendrites. Consistent with this finding, dendritic calcium transients evoked by single action potentials do not significantly attenuate with distance from the soma, whereas those evoked by trains attenuate substantially. Failure of action potential propagation into the distal dendrites often occurs at branch points. Consequently, neighboring regions of the dendritic tree can experience different voltage and calcium signals during repetitive action potential firing. The influence of backpropagating action potentials on synaptic integration and plasticity will therefore depend on both the extent of dendritic branching and the pattern of neuronal activity.

    View Publication Page
    05/26/95 | Addition of a 29 residue carboxyl-terminal tail converts a simple HMG box-containing protein into a transcriptional activator.
    Dairaghi DJ, Shadel GS, Clayton DA
    Journal of Molecular Biology. 1995 May 26;249(1):11-28. doi: 10.1101/gad.1352105

    Human mitochondrial transcription factor A (h-mtTFA) is essential for initiation of transcription from the two promoters located in the displacement-loop region of human mitochondrial DNA. This 25 kDa protein contains two tandem, HMG box DNA-binding domains separated by a 27 amino acid residue linker region and followed by a 25 residue carboxyl-terminal tail; both the linker and tail are rich in basic amino acid residues. Mutational analysis of h-mtTFA revealed that the tail region is important for specific DNA recognition and essential for transcriptional activation. The critical role of the human tail in transcription was confirmed by constructing chimeric proteins that exchanged similar regions between h-mtTFA and its Saccharomyces cerevisiae homolog, sc-mtTFA. Wild-type sc-mtTFA is unable to activate transcription from the human mitochondrial light-strand promoter (LSP). Addition of the human tail region to sc-mtTFA conferred LSP-specific promoter activation. In all of the different h-mtTFA mutations tested, transcriptional activation was correlated with specific DNA-binding activity, suggesting that these two functions may be inseparable, a situation entirely consistent with previous mutational analyses of human mitochondrial promoters.

    View Publication Page
    01/15/95 | Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons.
    Spruston N, Jonas P, Sakmann B
    J Physiol. 1995 Jan 15;482 ( Pt 2):325-52

    1. Properties of dendritic glutamate receptor (GluR) channels were investigated using fast application of glutamate to outside-out membrane patches isolated from the apical dendrites of CA3 and CA1 pyramidal neurons in rat hippocampal slices. CA3 patches were formed (15-76 microns from the soma) in the region of mossy fibre (MF) synapses, and CA1 patches (25-174 microns from the soma) in the region of Schaffer collateral (SC) innervation. 2. Dual-component responses consisting of a rapidly rising and decaying component followed by a second, substantially slower, component were elicited by 1 ms pulses of 1 mM glutamate in the presence of 10 microM glycine and absence of external Mg2+. The fast component was selectively blocked by 2-5 microM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and the slow component by 30 microM D-2-amino-5-phosphonopentanoic acid (D-AP5), suggesting that the fast and slow components were mediated by the GluR channels of the L-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and NMDA type, respectively. The peak amplitude ratio of the NMDA to AMPA receptor-mediated components varied between 0.03 and 0.62 in patches from both CA3 and CA1 dendrites. Patches lacking either component were rarely observed. 3. The peak current-voltage (I-V) relationship of the fast component was almost linear, whereas the I-V relationship of the slow component showed a region of negative slope in the presence of 1 mM external Mg2+. The reversal potential for both components was close to 0 mV. 4. Kainate-preferring GluR channels did not contribute appreciably to the response to glutamate. The responses to 100 ms pulses of 1 mM glutamate were mimicked by application of 1 mM AMPA, whereas 1 mM kainate produced much smaller, weakly desensitizing currents. This suggests that the fast component is primarily mediated by the action of glutamate on AMPA-preferring receptors. 5. The mean elementary conductance of AMPA receptor channels was about 10 pS, as estimated by non-stationary fluctuation analysis. The permeability of these channels to Ca2+ was low (approximately 5% of the permeability to Cs+). 6. The elementary conductance of NMDA receptor channels was larger, with a main conductance state of about 45 pS. These channels were 3.6 times more permeable to Ca2+ than to Cs+.(ABSTRACT TRUNCATED AT 400 WORDS)

    View Publication Page
    12/29/95 | Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death.
    Hay BA, Wassarman DA, Rubin GM
    Cell. 1995 Dec 29;83(7):1253-62. doi: 10.1186/gb-2007-8-7-r145

    Apoptotic cell death is a mechanism by which organisms eliminate superfluous or harmful cells. Expression of the cell death regulatory protein REAPER (RPR) in the developing Drosophila eye results in a small eye owing to excess cell death. We show that mutations in thread (th) are dominant enhancers of RPR-induced cell death and that th encodes a protein homologous to baculovirus inhibitors of apoptosis (IAPs), which we call Drosophila IAP1 (DIAP1). Overexpression of DIAP1 or a related protein, DIAP2, in the eye suppresses normally occurring cell death as well as death due to overexpression of rpr or head involution defective. IAP death-preventing activity localizes to the N-terminal baculovirus IAP repeats, a motif found in both viral and cellular proteins associated with death prevention.

    View Publication Page
    02/23/95 | Growth and differentiation in the Drosophila eye coordinated by hedgehog.
    Heberlein U, Singh CM, Luk AY, Donohoe TJ
    Nature. 1995 Feb 23;373(6516):709-11. doi: 10.1038/373709a0

    Differentiation of the Drosophila retina is asynchronous: it starts at the posterior margin of the eye imaginal disc and progresses anteriorly over two days. During this time the disc continues to grow, increasing in size by approximately eightfold. An indentation in the epithelium, the morphogenetic furrow, marks the front edge of the differentiation wave. Anterior progression of the furrow is thought to be driven by signals emanating from differentiating photoreceptor cells in the posterior eye disc. A good candidate for such a signal is the product of the hedgehog (hh) gene; it is expressed, and presumably secreted, by differentiating photoreceptors and its function is required for continued furrow movement. Here we show that ectopic expression of hedgehog sets in motion ectopic furrows in the anterior eye disc. In addition to changes in cell shape, these ectopic furrows are associated with a tightly orchestrated series of events, including proliferation, cell cycle synchronization and pattern formation, that parallel normal furrow progression. We propose that the morphogenetic furrow coincides with a transient boundary that coordinates growth and differentiation of the eye disc, and that hedgehog is necessary and sufficient to propagate this boundary across the epithelium.

    View Publication Page
    06/30/95 | Mechanisms of Drosophila retinal morphogenesis: the virtues of being progressive.
    Heberlein U, Moses K
    Cell. 1995 Jun 30;81(7):987-90
    04/22/95 | Phylogenetic evidence that aphids, rather than plants, determine gall morphology
    David L Stern
    Proceedings of the Royal Society of London. Series B: Biological Sciences;260(1357):85-89. doi: 10.1098/rspb.1995.0063

    Many diverse taxa have evolved independently the habit of living in plant galls. For all but some viral galls, it is unknown whether plants produce galls as a specialized plant reaction to certain types of herbivory, or whether herbivores direct gall development. Here I present a phylogenetic analysis of gallforming cerataphidine aphids which demonstrates that gall morphology is extremely conservative with respect to aphid phylogeny, but variable with respect to plant taxonomy. In addition, the phylogeny reveals at least three host plant switches where the aphids produce galls most similar to the galls of their closest relatives, rather than galls similar to the galls of aphids already present on the host plant. These results suggest that aphids determine the details of gall morphology essentially extending their phenotype to include plant material. Based on this and other evidence, I suggest that the aphids and other galling insects manipulate latent plant developmental programmes to produce modified atavistic plant morphologies rather than create new forms de novo.

    View Publication Page
    06/05/95 | Probing dendritic function with patch pipettes.
    Stuart G, Spruston N
    Curr Opin Neurobiol. 1995 Jun;5(3):389-94

    Most neurons in the CNS have complex, branching dendritic trees, which receive the majority of all synaptic input. As it is difficult to make electrical recordings from dendrites because of their small size, most of what is known about their electrical properties has been inferred from recordings made at the soma. By taking advantage of the higher resolution offered by improved optics, it is now possible to make patch-pipette recordings from the dendrites of neurons in brain slices under visual control. This new technique promises to provide valuable new information concerning dendritic function.

    View Publication Page
    02/01/95 | Proposed method for molecular optical imaging. (With commentary)
    Betzig E
    Optics Letters. 1995 Feb 1;20:237-9

    We can resolve multiple discrete features within a focal region of m spatial dimensions by first isolating each on the basis of n >/= 1 unique optical characteristics and then measuring their relative spatial coordinates. The minimum acceptable separation between features depends on the point-spread function in the (m + n)d-dimensional space formed by the spatial coordinates and the optical parameters, whereas the absolute spatial resolution is determined by the accuracy to which the coordinates can be measured. Estimates of each suggest that near-field fluorescence excitation microscopy/spectroscopy with molecular sensitivity and spatial resolution is possible.

    Commentary: Inspired by my earlier work (see below) in single molecule imaging and the isolation of multiple exciton recombination sites within a single probe volume, here I proposed the principle which would eventually lead to PALM. Indeed, all methods of localization microscopy, including PALM, fPALM, PALMIRA, STORM, dSTORM, PAINT, GSDIM, etc. are specific embodiments of the general principle of single molecule isolation and localization I introduced here.

    View Publication Page