Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

190 Publications

Showing 181-190 of 190 results
Your Criteria:
    01/01/12 | Use of a Drosophila genome-wide conserved sequence database to identify functionally related cis-regulatory enhancers.
    Brody T, Yavatkar AS, Kuzin A, Kundu M, Tyson LJ, Ross J, Lin T, Lee C, Awasaki T, Lee T, Odenwald WF
    Developmental Dynamics: An Official Publication of the American Association of Anatomists. 2012 Jan;241:169-89. doi: 10.1002/dvdy.22728

    Phylogenetic footprinting has revealed that cis-regulatory enhancers consist of conserved DNA sequence clusters (CSCs). Currently, there is no systematic approach for enhancer discovery and analysis that takes full-advantage of the sequence information within enhancer CSCs.

    View Publication Page
    04/09/12 | Using translational enhancers to increase transgene expression in Drosophila.
    Pfeiffer BD, Truman JW, Rubin GM
    Proceedings of the National Academy of Sciences of the United States of America. 2012 Apr 9;109(17):6626-31. doi: 10.1073/pnas.1204520109

    The ability to specify the expression levels of exogenous genes inserted in the genomes of transgenic animals is critical for the success of a wide variety of experimental manipulations. Protein production can be regulated at the level of transcription, mRNA transport, mRNA half-life, or translation efficiency. In this report, we show that several well-characterized sequence elements derived from plant and insect viruses are able to function in Drosophila to increase the apparent translational efficiency of mRNAs by as much as 20-fold. These increases render expression levels sufficient for genetic constructs previously requiring multiple copies to be effective in single copy, including constructs expressing the temperature-sensitive inactivator of neuronal function Shibire(ts1), and for the use of cytoplasmic GFP to image the fine processes of neurons.

    View Publication Page
    12/18/12 | Visual neuroscience: a moving story of neuromodulation.
    Jayaraman V
    Current Biology. 2012 Dec 18;22(24):R1057-9. doi: 10.1016/j.cub.2012.11.041

    The visual neurons of many animals process sensory input differently depending on the animal’s state of locomotion. Now, new work in Drosophila melanogaster shows that neuromodulatory neurons active during flight boost responses of neurons in the visual system.

    View Publication Page
    06/01/12 | Visualization and analysis of 3D microscopic images.
    Long F, Zhou J, Peng H
    PLoS Computational Biology. 2012 Jun;8:e1002519. doi: 10.1371/journal.pcbi.1002519

    In a wide range of biological studies, it is highly desirable to visualize and analyze three-dimensional (3D) microscopic images. In this primer, we first introduce several major methods for visualizing typical 3D images and related multi-scale, multi-time-point, multi-color data sets. Then, we discuss three key categories of image analysis tasks, namely segmentation, registration, and annotation. We demonstrate how to pipeline these visualization and analysis modules using examples of profiling the single-cell gene-expression of C. elegans and constructing a map of stereotyped neurite tracts in a fruit fly brain.

    View Publication Page
    12/01/12 | Visualization of live primary cilia dynamics using fluorescence microscopy.
    Ott C, Lippincott-Schwartz J
    Current protocols in cell biology / editorial board, Juan S. Bonifacino ... [et al.]. 2012 Dec;Chapter 4:Unit 4.26. doi: 10.1002/0471143030.cb0426s57

    Methods useful for exploring the formation and functions of primary cilia in living cells are described here. First, multiple protocols for visualizing solitary cilia that extend away from the cell body are described. Primary cilia collect, synthesize, and transmit information about the extracellular space into the cell body to promote critical cellular responses. Problems with cilia formation or function can lead to dramatic changes in cell physiology. These methods can be used to assess cilia formation and length, the location of the cilium relative to other cellular structures, and localization of specific proteins to the cilium. The subsequent protocols describe how to quantify movement of fluorescent molecules within the cilium using kymographs, photobleaching, and photoconversion. The microtubules that form the structural scaffold of the cilium are also critical avenues for kinesin and dynein-mediated movement of proteins within the cilium. Assessing intraflagellar dynamics can provide insight into mechanisms of ciliary-mediated signal perception and transmission.

    View Publication Page
    12/01/12 | Visualization of live primary cilia dynamics using fluorescence microscopy.
    Ott C, Lippincott-Schwartz J
    Current protocols in cell biology / editorial board, Juan S. Bonifacino ... [et al.]. 2012 Dec;Chapter 4:Unit 4.26. doi: 10.1002/0471143030.cb0426s57

    Methods useful for exploring the formation and functions of primary cilia in living cells are described here. First, multiple protocols for visualizing solitary cilia that extend away from the cell body are described. Primary cilia collect, synthesize, and transmit information about the extracellular space into the cell body to promote critical cellular responses. Problems with cilia formation or function can lead to dramatic changes in cell physiology. These methods can be used to assess cilia formation and length, the location of the cilium relative to other cellular structures, and localization of specific proteins to the cilium. The subsequent protocols describe how to quantify movement of fluorescent molecules within the cilium using kymographs, photobleaching, and photoconversion. The microtubules that form the structural scaffold of the cilium are also critical avenues for kinesin and dynein-mediated movement of proteins within the cilium. Assessing intraflagellar dynamics can provide insight into mechanisms of ciliary-mediated signal perception and transmission.

    View Publication Page
    12/11/12 | Visualizing cell structure and function with point-localization superresolution imaging.
    Sengupta P, van Engelenburg S, Lippincott-Schwartz J
    Developmental cell. 2012 Dec 11;23(6):1092-102. doi: 10.1016/j.devcel.2012.09.022

    Fundamental to the success of cell and developmental biology is the ability to tease apart molecular organization in cells and tissues by localizing specific proteins with respect to one another in a native cellular context. However, many key cellular structures (from mitochondrial cristae to nuclear pores) lie below the diffraction limit of visible light, precluding analysis of their organization by conventional approaches. Point-localization superresolution microscopy techniques, such as PALM and STORM, are poised to resolve, with unprecedented clarity, the organizational principles of macromolecular complexes within cells, thus leading to deeper insights into cellular function in both health and disease.

    View Publication Page
    Bock Lab
    02/01/12 | Volume electron microscopy for neuronal circuit reconstruction.
    Briggman KL, Bock DD
    Current Opinion in Neurobiology. 2012 Feb;22(1):154-61. doi: 10.1016/j.conb.2011.10.022

    The last decade has seen a rapid increase in the number of tools to acquire volume electron microscopy (EM) data. Several new scanning EM (SEM) imaging methods have emerged, and classical transmission EM (TEM) methods are being scaled up and automated. Here we summarize the new methods for acquiring large EM volumes, and discuss the tradeoffs in terms of resolution, acquisition speed, and reliability. We then assess each method’s applicability to the problem of reconstructing anatomical connectivity between neurons, considering both the current capabilities and future prospects of the method. Finally, we argue that neuronal ’wiring diagrams’ are likely necessary, but not sufficient, to understand the operation of most neuronal circuits: volume EM imaging will likely find its best application in combination with other methods in neuroscience, such as molecular biology, optogenetics, and physiology.

    View Publication Page
    Singer Lab
    09/01/12 | β-Actin mRNA compartmentalization enhances focal adhesion stability and directs cell migration.
    Katz ZB, Wells AL, Park HY, Wu B, Shenoy SM, Singer RH
    Genes & Development. 2012 Sep 1;26(17):1885-90. doi: 10.1101/gad.190413.112

    Directed cell motility is at the basis of biological phenomena such as development, wound healing, and metastasis. It has been shown that substrate attachments mediate motility by coupling the cell's cytoskeleton with force generation. However, it has been unclear how the persistence of cell directionality is facilitated. We show that mRNA localization plays an important role in this process, but the mechanism of action is still unknown. In this study, we show that the zipcode-binding protein 1 transports β-actin mRNA to the focal adhesion compartment, where it dwells for minutes, suggesting a means for associating its localization with motility through the formation of stable connections between adhesions and newly synthesized actin filaments. In order to demonstrate this, we developed an approach for assessing the functional consequences of β-actin mRNA and protein localization by tethering the mRNA to a specific location-in this case, the focal adhesion complex. This approach will have a significant impact on cell biology because it is now possible to forcibly direct any mRNA and its cognate protein to specific locations in the cell. This will reveal the importance of localized protein translation on various cellular processes.

    View Publication Page
    11/14/12 | β-secretase cleavage of the fly amyloid precursor protein is required for glial survival.
    Bolkan BJ, Triphan T, Kretzschmar D
    Journal of Neuroscience. 2012 Nov 14;32(46):16181-92. doi: 10.1523/JNEUROSCI.0228-12.2012

    β-secretase (or BACE1) is the key enzyme in the production of β-amyloid (Aβ), which accumulates in the senile plaques characteristic for Alzheimer's disease. Consequently, the lack of BACE1 prevents β-processing of the amyloid precursor protein and Aβ production, which made it a promising target for drug development. However, the loss of BACE1 is also detrimental, leading to myelination defects and altered neuronal activity, functions that have been associated with the cleavage of Neuregulin and a voltage-gated sodium channel subunit. Here we show that the Drosophila ortholog of BACE, dBACE, is required for glial survival. Cell-specific knockdown experiments reveal that this is a non-cell autonomous function, as a knockdown of dBACE in photoreceptor neurons leads to progressive degeneration of glia in their target zone, the lamina. Interestingly, this phenotype is suppressed by the loss of the fly amyloid precursor protein (APPL), whereas a secretion-deficient form of APPL enhances the degeneration. This shows that full-length APPL in neurons promotes the death of neighboring glial cells and that β-processing of APPL is needed to prevent glial death. These results therefore not only demonstrate a novel function for an APP protein in glia, but they also show this function specifically requires regulation by β-cleavage.

    View Publication Page