Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4 Publications

Showing 1-4 of 4 results
Your Criteria:
    Tjian LabSinger LabTranscription Imaging
    02/03/09 | Imaging transcription in living cells.
    Darzacq X, Yao J, Larson DR, Causse SZ, Bosanac L, de Turris V, Ruda VM, Lionnet T, Zenklusen D, Guglielmi B, Tjian R, Singer RH
    Annual Review of Biophysics. 2009 Feb 3;38:173-96. doi: 10.1073/pnas.1100640108

    The advent of new technologies for the imaging of living cells has made it possible to determine the properties of transcription, the kinetics of polymerase movement, the association of transcription factors, and the progression of the polymerase on the gene. We report here the current state of the field and the progress necessary to achieve a more complete understanding of the various steps in transcription. Our Consortium is dedicated to developing and implementing the technology to further this understanding.

    View Publication Page
    Tjian Lab
    12/25/09 | Shifting players and paradigms in cell-specific transcription.
    D’Alessio JA, Wright KJ, Tjian R
    Molecular Cell. 2009 Dec 25;36(6):924-31. doi: 10.1073/pnas.1100640108

    Historically, developmental-stage- and tissue-specific patterns of gene expression were assumed to be determined primarily by DNA regulatory sequences and their associated activators, while the general transcription machinery including core promoter recognition complexes, coactivators, and chromatin modifiers was held to be invariant. New evidence suggests that significant changes in these general transcription factors including TFIID, BAF, and Mediator may facilitate global changes in cell-type-specific transcription.

    View Publication Page
    Tjian Lab
    07/01/09 | Structures of three distinct activator-TFIID complexes.
    Liu W, Coleman RA, Ma E, Grob P, Yang JL, Zhang Y, Dailey G, Nogales E, Tjian R
    Genes & Development. 2009 Jul 1;23(13):1510-21. doi: 10.1073/pnas.1100640108

    Sequence-specific DNA-binding activators, key regulators of gene expression, stimulate transcription in part by targeting the core promoter recognition TFIID complex and aiding in its recruitment to promoter DNA. Although it has been established that activators can interact with multiple components of TFIID, it is unknown whether common or distinct surfaces within TFIID are targeted by activators and what changes if any in the structure of TFIID may occur upon binding activators. As a first step toward structurally dissecting activator/TFIID interactions, we determined the three-dimensional structures of TFIID bound to three distinct activators (i.e., the tumor suppressor p53 protein, glutamine-rich Sp1 and the oncoprotein c-Jun) and compared their structures as determined by electron microscopy and single-particle reconstruction. By a combination of EM and biochemical mapping analysis, our results uncover distinct contact regions within TFIID bound by each activator. Unlike the coactivator CRSP/Mediator complex that undergoes drastic and global structural changes upon activator binding, instead, a rather confined set of local conserved structural changes were observed when each activator binds holo-TFIID. These results suggest that activator contact may induce unique structural features of TFIID, thus providing nanoscale information on activator-dependent TFIID assembly and transcription initiation.

    View Publication Page
    Tjian Lab
    01/06/09 | Wnt signaling targets ETO coactivation domain of TAF4/TFIID in vivo.
    Wright KJ, Tjian R
    Proceedings of the National Academy of Sciences of the United States of America. 2009 Jan 6;106(1):55-60. doi: 10.1073/pnas.1100640108

    Understanding the diverse activities of the multisubunit core promoter recognition complex TFIID in vivo requires knowledge of how individual subunits contribute to overall functions of this TATA box-binding protein (TBP)/TBP-associated factor (TAF) complex. By generating altered holo-TFIID complexes in Drosophila we identify the ETO domain of TAF4 as a coactivator domain likely targeted by Pygopus, a protein that is required for Wingless-induced transcription of naked cuticle. These results establish a coactivator function of TAF4 and provide a strategy to dissect mechanisms of TFIID function in vivo.

    View Publication Page