Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

236 Publications

Showing 11-20 of 236 results
Your Criteria:
    Chklovskii Lab
    11/05/14 | A neuron as a signal processing device
    Tao Hu , Towfic Z, Pehlevan C, Genkin A, Chklovskii D
    2013 Asilomar Conference on Signals, Systems and Computers. 05/2014:. doi: 10.1109/ACSSC.2013.6810296

    A neuron is a basic physiological and computational unit of the brain. While much is known about the physiological properties of a neuron, its computational role is poorly understood. Here we propose to view a neuron as a signal processing device that represents the incoming streaming data matrix as a sparse vector of synaptic weights scaled by an outgoing sparse activity vector. Formally, a neuron minimizes a cost function comprising a cumulative squared representation error and regularization terms. We derive an online algorithm that minimizes such cost function by alternating between the minimization with respect to activity and with respect to synaptic weights. The steps of this algorithm reproduce well-known physiological properties of a neuron, such as weighted summation and leaky integration of synaptic inputs, as well as an Oja-like, but parameter-free, synaptic learning rule. Our theoretical framework makes several predictions, some of which can be verified by the existing data, others require further experiments. Such framework should allow modeling the function of neuronal circuits without necessarily measuring all the microscopic biophysical parameters, as well as facilitate the design of neuromorphic electronics.

    View Publication Page
    Cui Lab
    07/29/14 | A self-adaptive method for creating high efficiency communication channels through random scattering media.
    Hao X, Martin-Rouault L, Cui M
    Science Reports. 2014 Jul 29;4:5874. doi: 10.1038/srep05874

    Controlling the propagation of electromagnetic waves is important to a broad range of applications. Recent advances in controlling wave propagation in random scattering media have enabled optical focusing and imaging inside random scattering media. In this work, we propose and demonstrate a new method to deliver optical power more efficiently through scattering media. Drastically different from the random matrix characterization approach, our method can rapidly establish high efficiency communication channels using just a few measurements, regardless of the number of optical modes, and provides a practical and robust solution to boost the signal levels in optical or short wave communications. We experimentally demonstrated analog and digital signal transmission through highly scattering media with greatly improved performance. Besides scattering, our method can also reduce the loss of signal due to absorption. Experimentally, we observed that our method forced light to go around absorbers, leading to even higher signal improvement than in the case of purely scattering media. Interestingly, the resulting signal improvement is highly directional, which provides a new means against eavesdropping.

    View Publication Page
    Baker Lab
    04/16/14 | A small subset of fruitless subesophageal neurons modulate early courtship in Drosophila.
    Tran DH, Meissner GW, French RL, Baker BS
    PLoS One. 2014 Apr 16;9(4):e95472. doi: 10.1371/journal.pone.0095472

    We show that a small subset of two to six subesophageal neurons, expressing the male products of the male courtship master regulator gene products fruitlessMale (fruM), are required in the early stages of the Drosophila melanogaster male courtship behavioral program. Loss of fruM expression or inhibition of synaptic transmission in these fruM(+) neurons results in delayed courtship initiation and a failure to progress to copulation primarily under visually-deficient conditions. We identify a fruM-dependent sexually dimorphic arborization in the tritocerebrum made by two of these neurons. Furthermore, these SOG neurons extend descending projections to the thorax and abdominal ganglia. These anatomical and functional characteristics place these neurons in the position to integrate gustatory and higher-order signals in order to properly initiate and progress through early courtship.

    View Publication Page
    Card LabLeonardo Lab
    07/17/14 | A spike-timing mechanism for action selection.
    von Reyn CR, Breads P, Peek MY, Zheng GZ, Williamson WR, Yee AL, Leonardo A, Card GM
    Nature Neuroscience. 2014 Jul 17;17(7):962-70. doi: 10.1038/nn.3741

    We discovered a bimodal behavior in the genetically tractable organism Drosophila melanogaster that allowed us to directly probe the neural mechanisms of an action selection process. When confronted by a predator-mimicking looming stimulus, a fly responds with either a long-duration escape behavior sequence that initiates stable flight or a distinct, short-duration sequence that sacrifices flight stability for speed. Intracellular recording of the descending giant fiber (GF) interneuron during head-fixed escape revealed that GF spike timing relative to parallel circuits for escape actions determined which of the two behavioral responses was elicited. The process was well described by a simple model in which the GF circuit has a higher activation threshold than the parallel circuits, but can override ongoing behavior to force a short takeoff. Our findings suggest a neural mechanism for action selection in which relative activation timing of parallel circuits creates the appropriate motor output.

    View Publication Page
    Gonen Lab
    06/01/14 | A suite of software for processing MicroED data of extremely small protein crystals.
    Iadanza MG, Gonen T
    Journal of Applied Crystallography. 2014 Jun 1;47(Pt 3):1140-45. doi: 10.1107/S1600576714008073

    Electron diffraction of extremely small three-dimensional crystals (MicroED) allows for structure determination from crystals orders of magnitude smaller than those used for X-ray crystallography. MicroED patterns, which are collected in a transmission electron microscope, were initially not amenable to indexing and intensity extraction by standard software, which necessitated the development of a suite of programs for data processing. The MicroED suite was developed to accomplish the tasks of unit-cell determination, indexing, background subtraction, intensity measurement and merging, resulting in data that can be carried forward to molecular replacement and structure determination. This ad hoc solution has been modified for more general use to provide a means for processing MicroED data until the technique can be fully implemented into existing crystallographic software packages. The suite is written in Python and the source code is available under a GNU General Public License.

    View Publication Page
    Simpson Lab
    08/19/14 | A suppression hierarchy among competing motor programs drives sequential grooming in Drosophila.
    Seeds AM, Ravbar P, Chung P, Hampel S, Midgley FM, Mensh BD, Simpson JH
    eLife. 2014 Aug 19;3:e02951. doi: 10.7554/eLife.02951

    Motor sequences are formed through the serial execution of different movements, but how nervous systems implement this process remains largely unknown. We determined the organizational principles governing how dirty fruit flies groom their bodies with sequential movements. Using genetically targeted activation of neural subsets, we drove distinct motor programs that clean individual body parts. This enabled competition experiments revealing that the motor programs are organized into a suppression hierarchy; motor programs that occur first suppress those that occur later. Cleaning one body part reduces the sensory drive to its motor program, which relieves suppression of the next movement, allowing the grooming sequence to progress down the hierarchy. A model featuring independently evoked cleaning movements activated in parallel, but selected serially through hierarchical suppression, was successful in reproducing the grooming sequence. This provides the first example of an innate motor sequence implemented by the prevailing model for generating human action sequences.

    View Publication Page
    Simpson LabRubin Lab
    02/19/14 | A systematic nomenclature for the insect brain.
    Ito K, Shinomiya K, Ito M, Armstrong JD, Boyan G, Hartenstein V, Harzsch S, Heisenberg M, Homberg U, Jenett A, Keshishian H, Restifo LL, Rössler W, Simpson JH, Strausfeld NJ, Strauss R, Vosshall LB
    Neuron. 2014 Feb 19;81:755-65. doi: 10.1016/j.neuron.2013.12.017

    Despite the importance of the insect nervous system for functional and developmental neuroscience, descriptions of insect brains have suffered from a lack of uniform nomenclature. Ambiguous definitions of brain regions and fiber bundles have contributed to the variation of names used to describe the same structure. The lack of clearly determined neuropil boundaries has made it difficult to document precise locations of neuronal projections for connectomics study. To address such issues, a consortium of neurobiologists studying arthropod brains, the Insect Brain Name Working Group, has established the present hierarchical nomenclature system, using the brain of Drosophila melanogaster as the reference framework, while taking the brains of other taxa into careful consideration for maximum consistency and expandability. The following summarizes the consortium’s nomenclature system and highlights examples of existing ambiguities and remedies for them. This nomenclature is intended to serve as a standard of reference for the study of the brain of Drosophila and other insects.

    View Publication Page
    Gonen Lab
    08/13/14 | A type VI secretion-related pathway in bacteroidetes mediates interbacterial antagonism.
    Russell AB, Wexler AG, Harding BN, Whitney JC, Bohn AJ, Goo YA, Tran BQ, Barry NA, Zheng H, Peterson SB, Chou S, Gonen T, Goodlett DR, Goodman AL, Mougous JD
    Cell Host Microbe. 2014 Aug 13;16(2):227-36. doi: 10.1016/j.chom.2014.07.007

    Bacteroidetes are a phylum of Gram-negative bacteria abundant in mammalian-associated polymicrobial communities, where they impact digestion, immunity, and resistance to infection. Despite the extensive competition at high cell density that occurs in these settings, cell contact-dependent mechanisms of interbacterial antagonism, such as the type VI secretion system (T6SS), have not been defined in this group of organisms. Herein we report the bioinformatic and functional characterization of a T6SS-like pathway in diverse Bacteroidetes. Using prominent human gut commensal and soil-associated species, we demonstrate that these systems localize dynamically within the cell, export antibacterial proteins, and target competitor bacteria. The Bacteroidetes system is a distinct pathway with marked differences in gene content and high evolutionary divergence from the canonical T6S pathway. Our findings offer a potential molecular explanation for the abundance of Bacteroidetes in polymicrobial environments, the observed stability of Bacteroidetes in healthy humans, and the barrier presented by the microbiota against pathogens.

    View Publication Page
    07/21/14 | Abdominal-B neurons control Drosophila virgin female receptivity.
    Bussell JJ, Yapici N, Zhang SX, Dickson BJ, Vosshall LB
    Current Biology. 2014 Jul 21;24(14):1584-95. doi: 10.1016/j.cub.2014.06.011

    BACKGROUND: Female sexual receptivity offers an excellent model for complex behavioral decisions. The female must parse her own reproductive state, the external environment, and male sensory cues to decide whether to copulate. In the fly Drosophila melanogaster, virgin female receptivity has received relatively little attention, and its neural circuitry and individual behavioral components remain unmapped. Using a genome-wide neuronal RNAi screen, we identify a subpopulation of neurons responsible for pausing, a novel behavioral aspect of virgin female receptivity characterized in this study.

    RESULTS: We show that Abdominal-B (Abd-B), a homeobox transcription factor, is required in developing neurons for high levels of virgin female receptivity. Silencing adult Abd-B neurons significantly decreased receptivity. We characterize two components of receptivity that are elicited in sexually mature females by male courtship: pausing and vaginal plate opening. Silencing Abd-B neurons decreased pausing but did not affect vaginal plate opening, demonstrating that these two components of female sexual behavior are functionally separable. Synthetic activation of Abd-B neurons increased pausing, but male courtship song alone was not sufficient to elicit this behavior.

    CONCLUSIONS: Our results provide an entry point to the neural circuit controlling virgin female receptivity. The female integrates multiple sensory cues from the male to execute discrete motor programs prior to copulation. Abd-B neurons control pausing, a key aspect of female sexual receptivity, in response to male courtship.

    View Publication Page
    07/16/14 | Accessing the third dimension in localization-based super-resolution microscopy.
    Hajj B, El Beheiry M, Izeddin I, Darzacq X, Dahan M
    Physical Chemistry Chemical Physics. 2014 Jul 16;16(31):16340-8. doi: 10.1039/c4cp01380h

    Only a few years after its inception, localization-based super-resolution microscopy has become widely employed in biological studies. Yet, it is primarily used in two-dimensional imaging and accessing the organization of cellular structures at the nanoscale in three dimensions (3D) still poses important challenges. Here, we review optical and computational techniques that enable the 3D localization of individual emitters and the reconstruction of 3D super-resolution images. These techniques are grouped into three main categories: PSF engineering, multiple plane imaging and interferometric approaches. We provide an overview of their technical implementation as well as commentary on their applicability. Finally, we discuss future trends in 3D localization-based super-resolution microscopy.

    View Publication Page