Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
general_search_page-panel_pane_1 | views_panes

19 Publications

Showing 11-19 of 19 results
Your Criteria:
    Keller LabPavlopoulos Lab
    03/29/18 | Multi-view light-sheet imaging and tracking with the MaMuT software reveals the cell lineage of a direct developing arthropod limb.
    Wolff C, Tinevez J, Pietzsch T, Stamataki E, Harich B, Guignard L, Preibisch S, Shorte S, Keller PJ, Tomancak P, Pavlopoulos A
    eLife. 2018 Mar 29;7:e34410. doi: 10.7554/eLife.34410

    During development, coordinated cell behaviors orchestrate tissue and organ morphogenesis. Detailed descriptions of cell lineages and behaviors provide a powerful framework to elucidate the mechanisms of morphogenesis. To study the cellular basis of limb development, we imaged transgenic fluorescently-labeled embryos from the crustacean Parhyale hawaiensis with multi-view light-sheet microscopy at high spatiotemporal resolution over several days of embryogenesis. The cell lineage of outgrowing thoracic limbs was reconstructed at single-cell resolution with new software called Massive Multi-view Tracker (MaMuT). In silico clonal analyses suggested that the early limb primordium becomes subdivided into anterior-posterior and dorsal-ventral compartments whose boundaries intersect at the distal tip of the growing limb. Limb-bud formation is associated with spatial modulation of cell proliferation, while limb elongation is also driven by preferential orientation of cell divisions along the proximal-distal growth axis. Cellular reconstructions were predictive of the expression patterns of limb development genes including the BMP morphogen Decapentaplegic.

    View Publication Page
    Pavlopoulos Lab
    07/28/16 | Non-insect crustacean models in developmental genetics including an encomium to Parhyale hawaiensis.
    Stamataki E, Pavlopoulos A
    Current Opinion in Genetics & Development. 2016 Jul 28;39:149-156. doi: 10.1016/j.gde.2016.07.004

    The impressive diversity of body plans, lifestyles and segmental specializations exhibited by crustaceans (barnacles, copepods, shrimps, crabs, lobsters and their kin) provides great material to address longstanding questions in evolutionary developmental biology. Recent advances in forward and reverse genetics and in imaging approaches applied in the amphipod Parhyale hawaiensis and other emerging crustacean model species have made it possible to probe the molecular and cellular basis of crustacean diversity. A number of biological and technical qualities like the slow tempo and holoblastic cleavage mode, the stereotypy of many cellular processes, the functional and morphological diversity of limbs along the body axis, and the availability of various experimental manipulations, have made Parhyale a powerful system to study normal development and regeneration.

    View Publication Page
    Pavlopoulos Lab
    08/18/09 | Probing the evolution of appendage specialization by Hox gene misexpression in an emerging model crustacean.
    Pavlopoulos A, Kontarakis Z, Liubicich DM, Serano JM, Akam M, Patel NH, Averof M
    Proceedings of the National Academy of Sciences of the United States of America. 2009 Aug 18;106(33):13897-902. doi: 10.1073/pnas.0902804106

    Changes in the expression of Hox genes have been widely linked to the evolution of animal body plans, but functional demonstrations of this relationship have been impeded by the lack of suitable model organisms. A classic case study involves the repeated evolution of specialized feeding appendages, called maxillipeds, from anterior thoracic legs, in many crustacean lineages. These leg-to-maxilliped transformations correlate with the loss of Ultrabithorax (Ubx) expression from corresponding segments, which is proposed to be the underlying genetic cause. To functionally test this hypothesis, we establish tools for conditional misexpression and use these to misexpress Ubx in the crustacean Parhyale hawaiensis. Ectopic Ubx leads to homeotic transformations of anterior appendages toward more posterior thoracic fates, including maxilliped-to-leg transformations, confirming the capacity of Ubx to control thoracic (leg) versus gnathal (feeding) segmental identities. We find that maxillipeds not only are specified in the absence of Ubx, but also can develop in the presence of low/transient Ubx expression. Our findings suggest a path for the gradual evolutionary transition from thoracic legs to maxillipeds, in which stepwise changes in Hox gene expression have brought about this striking morphological and functional transformation.

    View Publication Page
    Pavlopoulos Lab
    11/22/20 | Regionalized tissue fluidization by an actomyosin cable is required for epithelial gap closure during insect gastrulation.
    Jain A, Ulman V, Mukherjee A, Prakash M, Pimpale L, Munster S, Panfilio KA, Jug F, Grill SW, Tomancak P, Pavlopoulos A
    Nature Communications. 2020 Aug 22;11(1):5604. doi: https://doi.org/10.1101/744193

    Many animal embryos face early on in development the problem of having to pull and close an epithelial sheet around the spherical yolk-sac. During this gastrulation process, known as epiboly, the spherical geometry of the egg dictates that the epithelial sheet first expands and subsequently compacts to close around the sphere. While it is well recognized that contractile actomyosin cables can drive epiboly movements, it is unclear how pulling on the leading edge can lead to simultaneous tissue expansion and compaction. Moreover, the epithelial sheet spreading over the sphere is mechanically stressed and this stress needs to be dissipated for seamless closure. While oriented cell division is known to dissipate tissue stresses during epiboly, it is unclear how this can be achieved without cell division. Here we show that during extraembryonic tissue (serosa) epiboly in the red flour beetle Tribolium castaneum, the non-proliferative serosa becomes regionalized into two distinct territories: a dorsal region under higher tension away from the leading edge with larger, isodiametric and non-rearranging cells, and a more fluid ventral region under lower tension surrounding the leading edge with smaller, anisotropic cells undergoing cell intercalation. Our results suggest that fluidization of the leading edge is effected by a heterogeneous actomyosin cable that drives sequential eviction and intercalation of individual cells away from the serosa margin. Since this developmental solution utilized during epiboly resembles the mechanism of wound healing in other systems, we propose actomyosin cable-driven local tissue fluidization as a conserved morphogenetic module for closure of epithelial gaps.

    View Publication Page
    Pavlopoulos Lab
    10/31/07 | The DNA transposon Minos as a tool for transgenesis and functional genomic analysis in vertebrates and invertebrates.
    Pavlopoulos A, Oehler S, Kapetanaki MG, Savakis C
    Genome Biology. 2007 Oct 31;8 Suppl 1:S2. doi: 10.1186/gb-2007-8-s1-s2

    Transposons are powerful tools for conducting genetic manipulation and functional studies in organisms that are of scientific, economic, or medical interest. Minos, a member of the Tc1/mariner family of DNA transposons, exhibits a low insertional bias and transposes with high frequency in vertebrates and invertebrates. Its use as a tool for transgenesis and genome analysis of rather different animal species is described.

    View Publication Page
    11/16/16 | The genome of the crustacean Parhyale hawaiensis: a model for animal development, regeneration, immunity and lignocellulose digestion.
    Kao D, Lai AG, Stamataki E, Rosic S, Konstantinides N, Jarvis E, Di Donfrancesco A, Pouchkina-Stantcheva N, Semon M, Grillo M, Bruce H, Kumar S, Siwanowicz I, Le A, Lemire A, Extavour C, Browne W, Wolff C, Averof M, et al
    eLife. 2016 Nov 16;5:e20062. doi: 10.7554/eLife.20062

    Parhyale hawaiensis is a blossoming model system for studies of developmental mechanisms and more recently adult regeneration. We have sequenced the genome allowing annotation of all key signaling pathways, small non-coding RNAs and transcription factors that will enhance ongoing functional studies. Parhayle is a member of the Malacostraca, which includes crustacean food crop species. We analysed the immunity related genes of Parhyale as an important comparative system for these species, where immunity related aquaculture problems have increased as farming has intensified. We also find that Parhyale and other species within Multicrustacea contain the enzyme sets necessary to perform lignocellulose digestion (wood eating), suggesting this ability may predate the diversification of this lineage. Our data provide an essential resource for further development of the Parhyale model. The first Malacostracan genome sequence will underpin ongoing comparative work in important food crop species and research investigating lignocellulose as energy source.

    Publication first appeared in BioRxiv on August 2, 2016. http://dx.doi.org/10.1101/065789

    View Publication Page
    Pavlopoulos Lab
    05/18/16 | Toll genes have an ancestral role in axis elongation.
    Benton MA, Pechmann M, Frey N, Stappert D, Conrads KH, Chen Y, Stamataki E, Pavlopoulos A, Roth S
    Current Biology : CB. 2016 May 18;26(12):1609-15. doi: 10.1016/j.cub.2016.04.055

    One of the key morphogenetic processes used during development is the controlled intercalation of cells between their neighbors. This process has been co-opted into a range of developmental events, and it also underlies an event that occurs in each major group of bilaterians: elongation of the embryo along the anterior-posterior axis [1]. In Drosophila, a novel component of this process was recently discovered by Paré et al., who showed that three Toll genes function together to drive cell intercalation during germband extension [2]. This finding raises the question of whether this role of Toll genes is an evolutionary novelty of flies or a general mechanism of embryonic morphogenesis. Here we show that the Toll gene function in axis elongation is, in fact, widely conserved among arthropods. First, we functionally demonstrate that two Toll genes are required for cell intercalation in the beetle Tribolium castaneum. We then show that these genes belong to a previously undescribed Toll subfamily and that members of this subfamily exhibit striped expression (as seen in Tribolium and previously reported in Drosophila [3-5]) in embryos of six other arthropod species spanning the entire phylum. Last, we show that two of these Toll genes are required for normal morphogenesis during anterior-posterior embryo elongation in the spider Parasteatoda tepidariorum, a member of the most basally branching arthropod lineage. From our findings, we hypothesize that Toll genes had a morphogenetic function in embryo elongation in the last common ancestor of all arthropods, which existed over 550 million years ago.

    View Publication Page
    Pavlopoulos Lab
    07/14/14 | Transgenesis in non-model organisms: the case of Parhyale.
    Kontarakis Z, Pavlopoulos A
    Methods Mol Biol. 2014;1196:145-81. doi: 10.1007/978-1-4939-1242-1_10

    One of the most striking manifestations of Hox gene activity is the morphological and functional diversity of arthropod body plans, segments, and associated appendages. Among arthropod models, the amphipod crustacean Parhyale hawaiensis satisfies a number of appealing biological and technical requirements to study the Hox control of tissue and organ morphogenesis. Parhyale embryos undergo direct development from fertilized eggs into miniature adults within 10 days and are amenable to all sorts of embryological and functional genetic manipulations. Furthermore, each embryo develops a series of specialized appendages along the anterior-posterior body axis, offering exceptional material to probe the genetic basis of appendage patterning, growth, and differentiation. Here, we describe the methodologies and techniques required for transgenesis-based gain-of-function studies of Hox genes in Parhyale embryos. First, we introduce a protocol for efficient microinjection of early-stage Parhyale embryos. Second, we describe the application of fast and reliable assays to test the activity of the Minos DNA transposon in embryos. Third, we present the use of Minos-based transgenesis vectors to generate stable and transient transgenic Parhyale. Finally, we describe the development and application of a conditional heat-inducible misexpression system to study the role of the Hox gene Ultrabithorax in Parhyale appendage specialization. Beyond providing a useful resource for Parhyalists, this chapter also aims to provide a road map for researchers working on other emerging model organisms. Acknowledging the time and effort that need to be invested in developing transgenic approaches in new species, it is all worth it considering the wide scope of experimentation that opens up once transgenesis is established.

    View Publication Page
    Pavlopoulos Lab
    02/14/14 | Tribolium embryo morphogenesis: may the force be with you.
    Benton MA, Pavlopoulos A
    Bioarchitecture. 2014 Jan-Feb;4(1):16-21. doi: 10.4161/bioa.27815

    Development of multicellular organisms depends on patterning and growth mechanisms encoded in the genome, but also on the physical properties and mechanical interactions of the constituent cells that interpret these genetic cues. This fundamental biological problem requires integrated studies at multiple levels of biological organization: from genes, to cell behaviors, to tissue morphogenesis. We have recently combined functional genetics with live imaging approaches in embryos of the insect Tribolium castaneum, in order to understand their remarkable transformation from a uniform single-layered blastoderm into a condensed multi-layered embryo covered by extensive extra-embryonic tissues. We first developed a quick and reliable methodology to fluorescently label various cell components in entire Tribolium embryos. Live imaging of labeled embryos at single cell resolution provided detailed descriptions of cell behaviors and tissue movements during normal embryogenesis. We then compared cell and tissue dynamics between wild-type and genetically perturbed embryos that exhibited altered relative proportions of constituent tissues. This systematic comparison led to a qualitative model of the molecular, cellular and tissue interactions that orchestrate the observed epithelial rearrangements. We expect this work to establish the Tribolium embryo as a powerful and attractive model system for biologists and biophysicists interested in the molecular, cellular and mechanical control of tissue morphogenesis.

    View Publication Page