Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
general_search_page-panel_pane_1 | views_panes

49 Publications

Showing 11-20 of 49 results
Your Criteria:
    Magee Lab
    03/01/02 | Conditional loss of Nkx3.1 in adult mice induces prostatic intraepithelial neoplasia.
    Abdulkadir SA, Magee JA, Peters TJ, Kaleem Z, Naughton CK, Humphrey PA, Milbrandt J
    Molecular and Cellular Biology. 2002 Mar;22(5):1495-503. doi: 10.1002/cbic.201000254

    The homeodomain-containing transcription factor NKX3.1 is a putative prostate tumor suppressor that is expressed in a largely prostate-specific and androgen-regulated manner. Loss of NKX3.1 protein expression is common in human prostate carcinomas and prostatic intraepithelial neoplasia (PIN) lesions and correlates with tumor progression. Disruption of the murine Nkx3.1 gene results in defects in prostate branching morphogenesis, secretions, and growth. To more closely mimic the pattern of NKX3.1 loss that occurs in human prostate tumors, we have used Cre- and loxP-mediated recombination to delete the Nkx3.1 gene in the prostates of adult transgenic mice. Conditional deletion of one or both alleles of Nkx3.1 leads to the development of preinvasive lesions that resemble PIN. The pattern of expression of several biomarkers (Ki-67, E-cadherin, and high-molecular-weight cytokeratins) in these PIN lesions resembled that observed in human cases of PIN. Furthermore, PIN foci in mice with conditional deletion of a single Nkx3.1 allele lose expression of the wild-type allele. Our results support the role of NKX3.1 as a prostate tumor suppressor and indicate a role for this gene in tumor initiation.

    View Publication Page
    Magee LabHarris Lab
    07/13/15 | Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons.
    Bittner KC, Grienberger C, Vaidya SP, Milstein AD, Macklin JJ, Suh J, Tonegawa S, Magee JC
    Nature Neuroscience. 2015 Jul 13:. doi: 10.1038/nn.4062

    Feature-selective firing allows networks to produce representations of the external and internal environments. Despite its importance, the mechanisms generating neuronal feature selectivity are incompletely understood. In many cortical microcircuits the integration of two functionally distinct inputs occurs nonlinearly through generation of active dendritic signals that drive burst firing and robust plasticity. To examine the role of this processing in feature selectivity, we recorded CA1 pyramidal neuron membrane potential and local field potential in mice running on a linear treadmill. We found that dendritic plateau potentials were produced by an interaction between properly timed input from entorhinal cortex and hippocampal CA3. These conjunctive signals positively modulated the firing of previously established place fields and rapidly induced new place field formation to produce feature selectivity in CA1 that is a function of both entorhinal cortex and CA3 input. Such selectivity could allow mixed network level representations that support context-dependent spatial maps.

    View Publication Page
    07/13/15 | Continuous volumetric imaging via an optical phase-locked ultrasound lens.
    Kong L, Tang J, Little JP, Yu Y, Lämmermann T, Lin CP, Germain RN, Cui M
    Nature Methods. 2015-Jul 13;12(8):759-62. doi: 10.1038/nmeth.3476

    In vivo imaging at high spatiotemporal resolution is key to the understanding of complex biological systems. We integrated an optical phase-locked ultrasound lens into a two-photon fluorescence microscope and achieved microsecond-scale axial scanning, thus enabling volumetric imaging at tens of hertz. We applied this system to multicolor volumetric imaging of processes sensitive to motion artifacts, including calcium dynamics in behaving mouse brain and transient morphology changes and trafficking of immune cells.

    View Publication Page
    Magee Lab
    05/01/12 | Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition.
    Royer S, Zemelman BV, Losonczy A, Kim J, Chance F, Magee JC, Buzsáki G
    Nature neuroscience. 2012 May;15:769-75. doi: 10.1038/nn.3077

    A consortium of inhibitory neurons control the firing patterns of pyramidal cells, but their specific roles in the behaving animal are largely unknown. We performed simultaneous physiological recordings and optogenetic silencing of either perisomatic (parvalbumin (PV) expressing) or dendrite-targeting (somatostatin (SOM) expressing) interneurons in hippocampal area CA1 of head-fixed mice actively moving a treadmill belt rich with visual-tactile stimuli. Silencing of either PV or SOM interneurons increased the firing rates of pyramidal cells selectively in their place fields, with PV and SOM interneurons having their largest effect during the rising and decaying parts of the place field, respectively. SOM interneuron silencing powerfully increased burst firing without altering the theta phase of spikes. In contrast, PV interneuron silencing had no effect on burst firing, but instead shifted the spikes’ theta phase toward the trough of theta. These findings indicate that perisomatic and dendritic inhibition have distinct roles in controlling the rate, burst and timing of hippocampal pyramidal cells.

    View Publication Page
    Magee Lab
    02/06/15 | Dendritic function in vivo.
    Grienberger C, Chen X, Konnerth A
    Trends in Neuroscience. 2015 Jan;38(1):45-54. doi: 10.1016/j.tins.2014.11.002

    Dendrites are the predominant entry site for excitatory synaptic potentials in most types of central neurons. There is increasing evidence that dendrites are not just passive transmitting devices but play active roles in synaptic integration through linear and non-linear mechanisms. Frequently, excitatory synapses are formed on dendritic spines. In addition to relaying incoming electrical signals, spines can play important roles in modifying these signals through complex biochemical processes and, thereby, determine learning and memory formation. Here, we review recent advances in our understanding of the function of spines and dendrites in central mammalian neurons in vivo by focusing particularly on insights obtained from Ca(2+) imaging studies.

    View Publication Page
    Magee Lab
    01/06/06 | Direct, androgen receptor-mediated regulation of the FKBP5 gene via a distal enhancer element.
    Magee JA, Chang L, Stormo GD, Milbrandt J
    Endocrinology. 2006 Jan 6;147(1):590-8. doi: 10.1002/cbic.201000254

    Androgen signaling via the androgen receptor (AR) transcription factor is crucial to normal prostate homeostasis and prostate tumorigenesis. Current models of AR function are predominantly based on studies of prostate-specific antigen regulation in androgen-responsive cell lines. To expand on these in vitro paradigms, we used the mouse prostate to elucidate the mechanisms through which AR regulates another direct target, FKBP5, in vivo. FKBP5 encodes an immunophilin that has been previously implicated in glucocorticoid and progestin signaling pathways and that likely influences prostate physiology in the presence of androgens. In this work, we show that androgens directly regulate FKBP5 via an interaction between the AR and a distal enhancer located 65 kb downstream of the transcription start site in the fifth intron of the FKBP5 gene. We have found that AR selectively recruits cAMP response element-binding protein to this enhancer. These interactions, in turn, result in chromatin remodeling that affects the enhancer proper but not the FKBP5 locus as a whole. Furthermore, in contrast to prostate-specific antigen-regulatory mechanisms, we show that transactivation of the FKBP5 gene does not rely on a single looping complex to mediate communication between the distal enhancer and proximal promoter. Rather, the distal enhancer complex and basal transcription apparatus communicate indirectly with one another, implicating a regulatory mechanism that has not been previously appreciated for AR target genes.

    View Publication Page
    Magee Lab
    01/21/15 | Distribution and function of HCN channels in the apical dendritic tuft of neocortical pyramidal neurons.
    Harnett MT, Magee JC, Williams SR
    Journal of Neuroscience. 2015 Jan 21;35(3):1024-37. doi: 10.1523/JNEUROSCI.2813-14.2015

    The apical tuft is the most remote area of the dendritic tree of neocortical pyramidal neurons. Despite its distal location, the apical dendritic tuft of layer 5 pyramidal neurons receives substantial excitatory synaptic drive and actively processes corticocortical input during behavior. The properties of the voltage-activated ion channels that regulate synaptic integration in tuft dendrites have, however, not been thoroughly investigated. Here, we use electrophysiological and optical approaches to examine the subcellular distribution and function of hyperpolarization-activated cyclic nucleotide-gated nonselective cation (HCN) channels in rat layer 5B pyramidal neurons. Outside-out patch recordings demonstrated that the amplitude and properties of ensemble HCN channel activity were uniform in patches excised from distal apical dendritic trunk and tuft sites. Simultaneous apical dendritic tuft and trunk whole-cell current-clamp recordings revealed that the pharmacological blockade of HCN channels decreased voltage compartmentalization and enhanced the generation and spread of apical dendritic tuft and trunk regenerative activity. Furthermore, multisite two-photon glutamate uncaging demonstrated that HCN channels control the amplitude and duration of synaptically evoked regenerative activity in the distal apical dendritic tuft. In contrast, at proximal apical dendritic trunk and somatic recording sites, the blockade of HCN channels decreased excitability. Dynamic-clamp experiments revealed that these compartment-specific actions of HCN channels were heavily influenced by the local and distributed impact of the high density of HCN channels in the distal apical dendritic arbor. The properties and subcellular distribution pattern of HCN channels are therefore tuned to regulate the interaction between integration compartments in layer 5B pyramidal neurons.

    View Publication Page
    Magee LabChklovskii Lab
    12/01/09 | Experience-dependent compartmentalized dendritic plasticity in rat hippocampal CA1 pyramidal neurons.
    Makara JK, Losonczy A, Wen Q, Magee JC
    Nature Neuroscience. 2009 Dec;12(12):1485-7. doi: 10.1038/nn.2428

    The excitability of individual dendritic branches is a plastic property of neurons. We found that experience in an enriched environment increased propagation of dendritic Na(+) spikes in a subset of individual dendritic branches in rat hippocampal CA1 pyramidal neurons and that this effect was mainly mediated by localized downregulation of A-type K(+) channel function. Thus, dendritic plasticity might be used to store recent experience in individual branches of the dendritic arbor.

    View Publication Page
    Magee Lab
    10/16/09 | Fast synaptic subcortical control of hippocampal circuits.
    Varga V, Losonczy A, Zemelman BV, Borhegyi Z, Nyiri G, Domonkos A, Hangya B, Holderith N, Magee JC, Freund TF
    Science. 2009 Oct 16;326(5951):449-53. doi: 10.1126/science.1178307

    Cortical information processing is under state-dependent control of subcortical neuromodulatory systems. Although this modulatory effect is thought to be mediated mainly by slow nonsynaptic metabotropic receptors, other mechanisms, such as direct synaptic transmission, are possible. Yet, it is currently unknown if any such form of subcortical control exists. Here, we present direct evidence of a strong, spatiotemporally precise excitatory input from an ascending neuromodulatory center. Selective stimulation of serotonergic median raphe neurons produced a rapid activation of hippocampal interneurons. At the network level, this subcortical drive was manifested as a pattern of effective disynaptic GABAergic inhibition that spread throughout the circuit. This form of subcortical network regulation should be incorporated into current concepts of normal and pathological cortical function.

    View Publication Page
    Magee Lab
    03/01/03 | Haploinsufficiency at the Nkx3.1 locus. A paradigm for stochastic, dosage-sensitive gene regulation during tumor initiation.
    Magee JA, Abdulkadir SA, Milbrandt J
    Cancer Cell. 2003 Mar;3(3):273-83. doi: 10.1002/cbic.201000254

    Tumorigenesis requires sequential accumulation of multiple genetic lesions. In the prostate, tumor initiation is often linked to loss of heterozygosity at the Nkx3.1 locus. In mice, loss of even one Nkx3.1 allele causes prostatic epithelial hyperplasia and eventual prostatic intraepithelial neoplasia (PIN) formation. Here we demonstrate that Nkx3.1 allelic loss extends the proliferative stage of regenerating luminal cells, leading to epithelial hyperplasia. Microarray analysis identified Nkx3.1 target genes, many of which show exquisite dosage sensitivity. The number of Nkx3.1 alleles determines the relative probabilities of stochastic activation or inactivation of a given target gene. Thus, loss of a single Nkx3.1 allele likely results in hyperplasia and PIN by increasing the probability of completely inactivating select Nkx3.1-regulated pathways within a subset of affected cells.

    View Publication Page