Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block

Type of Publication

general_search_page-panel_pane_1 | views_panes

100 Publications

Showing 1-10 of 100 results
Your Criteria:
    Gonen Lab
    02/15/08 | A conformational switch in bacteriophage p22 portal protein primes genome injection.
    Zheng H, Olia AS, Gonen M, Andrews S, Cingolani G, Gonen T
    Molecular Cell. 2008 Feb 15;29(3):376-83. doi: 10.1016/j.molcel.2007.11.034

    Double-stranded DNA (dsDNA) viruses such as herpesviruses and bacteriophages infect by delivering their genetic material into cells, a task mediated by a DNA channel called "portal protein." We have used electron cryomicroscopy to determine the structure of bacteriophage P22 portal protein in both the procapsid and mature capsid conformations. We find that, just as the viral capsid undergoes major conformational changes during virus maturation, the portal protein switches conformation from a procapsid to a mature phage state upon binding of gp4, the factor that initiates tail assembly. This dramatic conformational change traverses the entire length of the DNA channel, from the outside of the virus to the inner shell, and erects a large dome domain directly above the DNA channel that binds dsDNA inside the capsid. We hypothesize that this conformational change primes dsDNA for injection and directly couples completion of virus morphogenesis to a new cycle of infection.

    View Publication Page
    01/01/08 | A critical role for N-WASp in cell migration during central nervous system development.
    Jin F, Bharioke A, Zhang J, Kuhlmann T, Georgiou J, Lommel S, Siminovitch K
    International Journal of Developmental Neuroscience. 2008;26:413
    11/15/08 | A highly sensitive fluorogenic probe for cytochrome P450 activity in live cells.
    Yatzeck MM, Lavis LD, Chao T, Chandran SS, Raines RT
    Bioorganic & Medicinal Chemistry Letters. 2008 Nov 15;18(22):5864-6. doi: 10.1016/j.bmcl.2008.06.015

    A derivative of rhodamine 110 has been designed and assessed as a probe for cytochrome P450 activity. This probe is the first to utilize a ’trimethyl lock’ that is triggered by cleavage of an ether bond. In vitro, fluorescence was manifested by the CYP1A1 isozyme with k(cat)/K(M)=8.8x10(3)M(-1)s(-1) and K(M)=0.09microM. In cellulo, the probe revealed the induction of cytochrome P450 activity by the carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin, and its repression by the chemoprotectant resveratrol.

    View Publication Page
    01/30/08 | A modular display system for insect behavioral neuroscience.
    Reiser MB, Dickinson MH
    Journal of Neuroscience Methods. 2008 Jan 30;167(2):127-39. doi: 10.1016/j.cub.2010.06.072

    Flying insects exhibit stunning behavioral repertoires that are largely mediated by the visual control of flight. For this reason, presenting a controlled visual environment to tethered insects has been and continues to be a powerful tool for studying the sensory control of complex behaviors. To create an easily controlled, scalable, and customizable visual stimulus, we have designed a modular system, based on panels composed of an 8 x 8 array of individual LEDs, that may be connected together to ’tile’ an experimental environment with controllable displays. The panels have been designed to be extremely bright, with the added flexibility of individual-pixel brightness control, allowing experimentation over a broad range of behaviorally relevant conditions. Patterns to be displayed may be designed using custom software, downloaded to a controller board, and displayed on the individually addressed panels via a rapid communication interface. The panels are controlled by a microprocessor-based display controller which, for most experiments, will not require a computer in the loop, greatly reducing the experimental infrastructure. This technology allows an experimenter to build and program a visual arena with a customized geometry in a matter of hours. To demonstrate the utility of this system, we present results from experiments with tethered Drosophila melanogaster: (1) in a cylindrical arena composed of 44 panels, used to test the contrast dependence of object orientation behavior, and (2) above a 30-panel floor display, used to examine the effects of ground motion on orientation during flight.

    View Publication Page
    06/10/08 | A novel basal ganglia pathway forms a loop linking a vocal learning circuit with its dopaminergic input.
    Gale SD, Person AL, Perkel DJ
    The Journal of Comparative Neurology. 2008 Jun 10;508(5):824-39. doi: 10.1002/cne.21700

    Dopamine has been implicated in mediating contextual modulation of motor behaviors and learning in many species. In songbirds, dopamine may act on the basal ganglia nucleus Area X to influence the neural activity that contributes to vocal learning and contextual changes in song variability. Neurons in midbrain dopamine centers, the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA), densely innervate Area X and show singing-related changes in firing rate. In addition, dopamine levels in Area X change during singing. It is unknown, however, how song-related information could reach dopaminergic neurons. Here we report an anatomical pathway that could provide song-related information to the SNc and VTA. By using injections of bidirectionally transported fluorescent tracers in adult male zebra finches, we show that Area X and other song control nuclei do not project directly to the SNc or VTA. Instead, we describe an indirect pathway from Area X to midbrain dopaminergic neurons via a connection in the ventral pallidum (VP). Specifically, Area X projects to the VP via axon collaterals of Area X output neurons that also project to the thalamus. Dual injections revealed that the area of VP receiving input from Area X projects to the SNc and VTA. Furthermore, VP terminals in the SNc and VTA overlap with cells that project back to Area X. A portion of the arcopallium also projects to the SNc and VTA and could carry auditory information. These data demonstrate an anatomical loop through which Area X activity could influence its dopaminergic input.

    View Publication Page
    Fetter Lab
    10/24/08 | A parasite cysteine protease is key to host protein degradation and iron acquisition.
    O'Brien TC, Mackey ZB, Fetter RD, Choe Y, O'Donoghue AJ, Zhou M, Craik CS, Caffrey CR, McKerrow JH
    Journal of Biological Chemistry. 2008 Oct 24;283(43):28934-43. doi: 10.1074/jbc.M805824200

    Cysteine proteases of the Clan CA (papain) family are the predominant protease group in primitive invertebrates. Cysteine protease inhibitors arrest infection by the protozoan parasite, Trypanosoma brucei. RNA interference studies implicated a cathepsin B-like protease, tbcatB, as a key inhibitor target. Utilizing parasites in which one of the two alleles of tbcatb has been deleted, the key role of this protease in degradation of endocytosed host proteins is delineated. TbcatB deficiency results in a decreased growth rate and dysmorphism of the flagellar pocket and the subjacent endocytic compartment. Western blot and microscopic analysis indicate that deficiency in tbcatB results in accumulation of both host and parasite proteins, including the lysosomal marker p67. A critical function for parasitism is the degradation of host transferrin, which is necessary for iron acquisition. Substrate specificity analysis of recombinant tbcatB revealed the optimal peptide cleavage sequences for the enzyme and these were confirmed experimentally using FRET-based substrates. Degradation of transferrin was validated by SDS-PAGE and the specific cleavage sites identified by N-terminal sequencing. Because even a modest deficiency in tbcatB is lethal for the parasite, tbcatB is a logical target for the development of new anti-trypanosomal chemotherapy.

    View Publication Page
    Fetter Lab
    04/24/08 | A presynaptic giant ankyrin stabilizes the NMJ through regulation of presynaptic microtubules and transsynaptic cell adhesion.
    Pielage J, Cheng L, Fetter RD, Carlton PM, Sedat JW, Davis GW
    Neuron. 2008 Apr 24;58(2):195-209. doi: 10.1016/j.neuron.2008.02.017

    In a forward genetic screen for mutations that destabilize the neuromuscular junction, we identified a novel long isoform of Drosophila ankyrin2 (ank2-L). We demonstrate that loss of presynaptic Ank2-L not only causes synapse disassembly and retraction but also disrupts neuronal excitability and NMJ morphology. We provide genetic evidence that ank2-L is necessary to generate the membrane constrictions that normally separate individual synaptic boutons and is necessary to achieve the normal spacing of subsynaptic protein domains, including the normal organization of synaptic cell adhesion molecules. Mechanistically, synapse organization is correlated with a lattice-like organization of Ank2-L, visualized using extended high-resolution structured-illumination microscopy. The stabilizing functions of Ank2-L can be mapped to the extended C-terminal domain that we demonstrate can directly bind and organize synaptic microtubules. We propose that a presynaptic Ank2-L lattice links synaptic membrane proteins and spectrin to the underlying microtubule cytoskeleton to organize and stabilize the presynaptic terminal.

    View Publication Page
    01/28/08 | A rate-efficient approach for establishing visual correspondences via distributed source coding.
    Yeo C, Ahammad P, Ramchandran K
    SPIE Visual Communications and Image Processing. 2008 Jan 28:

    We consider the problem of communicating compact descriptors for the purpose of establishing visual correspondences between two cameras operating under rate constraints. Establishing visual correspondences is a critical step before other tasks such as camera calibration or object recognition can be performed in a network of cameras. We verify that descriptors of regions which are in correspondence are highly correlated, and propose the use of distributed source coding to reduce the bandwidth needed for transmitting descriptors required to establish correspondence. Our experiments demonstrate that the proposed scheme is able to provide compression gains of 57% with minimal loss in the number of correctly established correspondences compared to a scheme that communicates the entire image of the scene losslessly in compressed form. Over a wide range of rates, the proposed scheme also provides superior performance when compared to simply transmitting all the feature descriptors.

    View Publication Page
    06/26/08 | Analysis of a spatial orientation memory in Drosophila.
    Neuser K, Triphan T, Mronz M, Poeck B, Strauss R
    Nature. 2008 Jun 26;453(7199):1244-7. doi: 10.1038/nature07003

    Flexible goal-driven orientation requires that the position of a target be stored, especially in case the target moves out of sight. The capability to retain, recall and integrate such positional information into guiding behaviour has been summarized under the term spatial working memory. This kind of memory contains specific details of the presence that are not necessarily part of a long-term memory. Neurophysiological studies in primates indicate that sustained activity of neurons encodes the sensory information even though the object is no longer present. Furthermore they suggest that dopamine transmits the respective input to the prefrontal cortex, and simultaneous suppression by GABA spatially restricts this neuronal activity. Here we show that Drosophila melanogaster possesses a similar spatial memory during locomotion. Using a new detour setup, we show that flies can remember the position of an object for several seconds after it has been removed from their environment. In this setup, flies are temporarily lured away from the direction towards their hidden target, yet they are thereafter able to aim for their former target. Furthermore, we find that the GABAergic (stainable with antibodies against GABA) ring neurons of the ellipsoid body in the central brain are necessary and their plasticity is sufficient for a functional spatial orientation memory in flies. We also find that the protein kinase S6KII (ignorant) is required in a distinct subset of ring neurons to display this memory. Conditional expression of S6KII in these neurons only in adults can restore the loss of the orientation memory of the ignorant mutant. The S6KII signalling pathway therefore seems to be acutely required in the ring neurons for spatial orientation memory in flies.

    View Publication Page
    06/24/08 | Aphids.
    Stern DL
    Curr Biol. 2008 Jun 24;18(12):R504-5. doi: 10.1016/j.cub.2008.03.034

    Mammalian herbivores profoundly influence plant-dwelling insects [1]. Most studies have focused on the indirect effect of herbivory on insect populations via damage to the host plant [2,3]. Many insects, however, are in danger of being inadvertently ingested during herbivore feeding. Here, we report that pea aphids (Acyrthosiphon pisum) are able to sense the elevated heat and humidity of the breath of an approaching herbivore and thus salvage most of the colony by simultaneously dropping off the plant in large numbers immediately before the plant is eaten. Dropping entails the risk of losing the host plant and becoming desiccated or preyed upon on the ground [4,5], yet pea aphids may sporadically drop when threatened by insect enemies [6]. The immediate mass dropping, however, is an adaptation to the potential destructive impact of mammalian herbivory on the entire aphid colony. The combination of heat and humidity serves as a reliable cue to impending mammalian herbivory, enabling the aphids to avoid unnecessary dropping. No defensive behavior against incidental predation by herbivores has ever been demonstrated. The pea aphids' highly adaptive escape behavior uniquely demonstrates the strength of the selective pressure large mammalian herbivores impose on insect herbivores.

    View Publication Page