Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

6 Publications

Showing 1-6 of 6 results
Your Criteria:
    Tjian Lab
    02/21/06 | Cell-type-selective induction of c-jun by TAF4b directs ovarian-specific transcription networks.
    Geles KG, Freiman RN, Liu W, Zheng S, Voronina E, Tjian R
    Proceedings of the National Academy of Sciences of the United States of America. 2006 Feb 21;103(8):2594-9. doi: 10.1073/pnas.1100640108

    Cell-type-selective expression of the TFIID subunit TAF(II)105 (renamed TAF4b) in the ovary is essential for proper follicle development. Although a multitude of signaling pathways required for folliculogenesis have been identified, downstream transcriptional integrators of these signals remain largely unknown. Here, we show that TAF4b controls the granulosa-cell-specific expression of the proto-oncogene c-jun, and together they regulate transcription of ovary-selective promoters. Instead of using cell-type-specific activators, our findings suggest that the coactivator TAF4b regulates the expression of tissue-specific genes, at least in part, through the cell-type-specific induction of c-jun, a ubiquitous activator. Importantly, the loss of TAF4b in ovarian granulosa cells disrupts cellular morphologies and interactions during follicle growth that likely contribute to the infertility observed in TAF4b-null female mice. These data highlight a mechanism for potentiating tissue-selective functions of the basal transcription machinery and reveal intricate networks of gene expression that orchestrate ovarian-specific functions and cell morphology.

    View Publication Page
    Magee Lab
    02/15/06 | State-dependent dendritic computation in hippocampal CA1 pyramidal neurons.
    Gasparini S, Magee JC
    The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2006 Feb 15;26(7):2088-100. doi: 10.1002/cbic.201000254

    Depending on the behavioral state, hippocampal CA1 pyramidal neurons receive very distinct patterns of synaptic input and likewise produce very different output patterns. We have used simultaneous dendritic and somatic recordings and multisite glutamate uncaging to investigate the relationship between synaptic input pattern, the form of dendritic integration, and action potential output in CA1 neurons. We found that when synaptic input arrives asynchronously or highly distributed in space, the dendritic arbor performs a linear integration that allows the action potential rate and timing to vary as a function of the quantity of the input. In contrast, when synaptic input arrives synchronously and spatially clustered, the dendritic compartment receiving the clustered input produces a highly nonlinear integration that leads to an action potential output that is extraordinarily precise and invariant. We also present evidence that both of these forms of information processing may be independently engaged during the two distinct behavioral states of the hippocampus such that individual CA1 pyramidal neurons could perform two different state-dependent computations: input strength encoding during theta states and feature detection during sharp waves.

    View Publication Page
    02/01/06 | A novel spectroscopic probe for molecular chirality.
    Ji N, Shen Y
    Chirality. 2006 Feb;18(3):146-58. doi: 10.1002/chir.20238

    Recent advances in developing sum frequency generation (SFG) as a novel spectroscopic probe for molecular chirality are reviewed. The basic principle underlying the technique is briefly described, in comparison with circular dichroism (CD). The significantly better sensitivity of the technique than CD is pointed out, and the reason is discussed. Bi-naphthol (BN) and amino acids are used as representatives for two different types of chiral molecules; the measured chirality in their electronic transitions can be understood by two different molecular models, respectively, that are extensions of models developed earlier for CD. Optically active or chiral SFG from vibrational transitions are weaker, but with the help of electronic-vibrational double resonance, the vibrational spectrum of a monolayer of BN has been obtained. Generally, optically active SFG is sufficiently sensitive to be employed to probe in-situ chirality of chiral monolayers and thin films.

    View Publication Page
    02/01/06 | Hyperpolarization-activated cation current (Ih) is an ethanol target in midbrain dopamine neurons of mice.
    Okamoto T, Harnett MT, Morikawa H
    Journal of Neurophysiology. 2006 Feb;95:619-26. doi: 10.1152/jn.00682.2005

    Ethanol stimulates the firing activity of midbrain dopamine (DA) neurons, leading to enhanced dopaminergic transmission in the mesolimbic system. This effect is thought to underlie the behavioral reinforcement of alcohol intake. Ethanol has been shown to directly enhance the intrinsic pacemaker activity of DA neurons, yet the cellular mechanism mediating this excitation remains poorly understood. The hyperpolarization-activated cation current, Ih, is known to contribute to the pacemaker firing of DA neurons. To determine the role of Ih in ethanol excitation of DA neurons, we performed patch-clamp recordings in acutely prepared mouse midbrain slices. Superfusion of ethanol increased the spontaneous firing frequency of DA neurons in a reversible fashion. Treatment with ZD7288, a blocker of Ih, irreversibly depressed basal firing frequency and significantly attenuated the stimulatory effect of ethanol on firing. Furthermore, ethanol reversibly augmented Ih amplitude and accelerated its activation kinetics. This effect of ethanol was accompanied by a shift in the voltage dependence of Ih activation to more depolarized potentials and an increase in the maximum Ih conductance. Cyclic AMP mediated the depolarizing shift in Ih activation but not the increase in the maximum conductance. Finally, repeated ethanol treatment in vivo induced downregulation of Ih density in DA neurons and an accompanying reduction in the magnitude of ethanol stimulation of firing. These results suggest an important role of Ih in the reinforcing actions of ethanol and in the neuroadaptations underlying escalation of alcohol consumption associated with alcoholism.

    View Publication Page
    02/01/06 | Life sciences require the third dimension.
    Keller PJ, Pampaloni F, Stelzer EH
    Current Opinion in Cell Biology. 2006 Feb;18(1):117-24. doi: 10.1016/j.ceb.2005.12.012

    Novel technologies are required for three-dimensional cell biology and biophysics. By three-dimensional we refer to experimental conditions that essentially try to avoid hard and flat surfaces and favour unconstrained sample dynamics. We believe that light-sheet-based microscopes are particularly well suited to studies of sensitive three-dimensional biological systems. The application of such instruments can be illustrated with examples from the biophysics of microtubule dynamics and three-dimensional cell cultures. Our experience leads us to suggest that three-dimensional approaches reveal new aspects of a system and enable experiments to be performed in a more physiological and hence clinically more relevant context.

    View Publication Page
    Magee Lab
    02/01/06 | Sleep deprivation-induced alterations in excitatory synaptic transmission in the CA1 region of the rat hippocampus.
    McDermott CM, Hardy MN, Bazan NG, Magee JC
    The Journal of Physiology. 2006 Feb 1;570(Pt 3):553-65. doi: 10.1002/cbic.201000254

    Although the function of sleep remains elusive, there is compelling evidence to suggest that sleep plays an important role in learning and memory. A number of studies have now shown that sleep deprivation (SD) results in significant impairment of long-term potentiation (LTP) in the hippocampus. In this study, we have attempted to determine the mechanisms responsible for this impairment. After 72 h SD using the multiple-platform technique, we observed a reduction in the whole-cell recorded NMDA/AMPA ratio of CA1 pyramidal cells in response to Schaffer collateral stimulation. This impairment was specific to sleep deprivation as rats placed over a single large platform, which allowed sleep, had a normal NMDA/AMPA ratio. mEPSCs evoked by local application of a high osmolarity solution revealed no differences in the AMPA receptor function. NMDA currents recorded from outside-out patches excised from the distal dendrites of CA1 cells displayed a reduction in amplitude after SD. While there were no alterations in the glutamate sensitivity, channel open probability or the single channel conductance of the receptor, a crosslinking assay demonstrated that the NR1 and NR2A subunits of NMDA receptors were preferentially retained in the cytoplasm after SD, indicating that SD alters NMDAR surface expression. In summary, we have identified a potential mechanism underlying SD-induced LTP impairment. This synaptic alteration may underlie the cognitive deficits seen following sleep deprivation and could represent a target for future intervention studies.

    View Publication Page