Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
general_search_page-panel_pane_1 | views_panes

4 Publications

Showing 1-4 of 4 results
Your Criteria:
    04/21/06 | Janelia Farm: an experiment in scientific culture.
    Rubin GM
    Cell. 2006 Apr 21;125(2):209-12. doi: 10.1016/j.cell.2006.04.005

    Janelia Farm, the new research campus of the Howard Hughes Medical Institute, is an ongoing experiment in the social engineering of research communities.

    View Publication Page
    Magee Lab
    04/20/06 | Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons.
    Losonczy A, Magee JC
    Neuron. 2006 Apr 20;50(2):291-307. doi: 10.1016/j.neuron.2006.03.016

    Although radial oblique dendrites are a major synaptic input site in CA1 pyramidal neurons, little is known about their integrative properties. We have used multisite two-photon glutamate uncaging to deliver different spatiotemporal input patterns to single branches while simultaneously recording the uncaging-evoked excitatory postsynaptic potentials and local Ca2+ signals. Asynchronous input patterns sum linearly in spite of the spatial clustering and produce Ca2+ signals that are mediated by NMDA receptors (NMDARs). Appropriately timed and sized input patterns ( approximately 20 inputs within approximately 6 ms) produce a supralinear summation due to the initiation of a dendritic spike. The Ca2+ signals associated with synchronous input were larger and mediated by influx through both NMDARs and voltage-gated Ca2+ channels (VGCCs). The oblique spike is a fast Na+ spike whose duration is shaped by the coincident activation of NMDAR, VGCCs, and transient K+ currents. Our results suggest that individual branches can function as single integrative compartments.

    View Publication Page
    04/01/06 | In situ background estimation in quantitative fluorescence imaging.
    Chen T, Lin B, Brunner E, Schild D
    Biophysical Journal. 2006 Apr 1;90(7):2534-47. doi: 10.1529/biophysj.105.070854

    Fluorescence imaging of bulk-stained tissue is a popular technique for monitoring the activities in a large population of cells. However, a precise quantification of such experiments is often compromised by an ambiguity of background estimation. Although, in single-cell-staining experiments, background can be measured from a neighboring nonstained region, such a region often does not exist in bulk-stained tissue. Here we describe a novel method that overcomes this problem. In contrast to previous methods, we determined the background of a given region of interest (ROI) using the information contained in the temporal dynamics of its individual pixels. Since no information outside the ROI is needed, the method can be used regardless of the staining profile in the surrounding tissue. Moreover, we extend the method to deal with background inhomogeneities within a single ROI, a problem not yet solved by any of the currently available tools. We performed computer simulations to demonstrate the accuracy of our method and give example applications in ratiometric calcium imaging of bulk-stained olfactory bulb slices. Converting the fluorescence signals into [Ca2+] gives resting values consistent with earlier single-cell staining results, and odorant-induced [Ca2+] transients can be quantitatively compared in different cells. Using these examples we show that inaccurate background subtraction introduces large errors (easily in the range of 100%) in the assessment of both resting [Ca2+] and [Ca2+] dynamics. The proposed method allows us to avoid such errors.

    View Publication Page
    04/01/06 | Mean-field analysis of selective persistent activity in presence of short-term synaptic depression.
    Romani S, Amit DJ, Mongillo G
    Journal of Computational Neuroscience. 2006 Apr;20(2):201-17. doi: 10.1007/s10827-006-6308-x

    Mean-Field theory is extended to recurrent networks of spiking neurons endowed with short-term depression (STD) of synaptic transmission. The extension involves the use of the distribution of interspike intervals of an integrate-and-fire neuron receiving a Gaussian current, with a given mean and variance, in input. This, in turn, is used to obtain an accurate estimate of the resulting postsynaptic current in presence of STD. The stationary states of the network are obtained requiring self-consistency for the currents-those driving the emission processes and those generated by the emitted spikes. The model network stores in the distribution of two-state efficacies of excitatory-to-excitatory synapses, a randomly composed set of external stimuli. The resulting synaptic structure allows the network to exhibit selective persistent activity for each stimulus in the set. Theory predicts the onset of selective persistent, or working memory (WM) activity upon varying the constitutive parameters (e.g. potentiated/depressed long-term efficacy ratio, parameters associated with STD), and provides the average emission rates in the various steady states. Theoretical estimates are in remarkably good agreement with data "recorded" in computer simulations of the microscopic model.

    View Publication Page