Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

161 Publications

Showing 71-80 of 161 results
Your Criteria:
    06/07/10 | Delivery of picosecond lasers in multimode fibers for coherent anti-Stokes Raman scattering imaging.
    Wang Z, Yang Y, Luo P, Gao L, Wong KK, Wong ST
    Optics Express. 2010 Jun 7;18(12):13017-28. doi: 10.1364/AO.50.001792

    We investigated the possibility of using standard commercial multimode fibers (MMF), Corning SMF28 fibers, to deliver picosecond excitation lasers for coherent anti-Stokes Raman scattering (CARS) imaging. We theoretically and/or experimentally analyzed issues associated with the fiber delivery, such as dispersion length, walk-off length, nonlinear length, average threshold power for self-phase modulations, and four-wave mixing (FWM). These analyses can also be applied to other types of fibers. We found that FWM signals are generated in MMF, but they can be filtered out using a long-pass filter for CARS imaging. Finally, we demonstrated that MMF can be used for delivery of picosecond excitation lasers in the CARS imaging system without any degradation of image quality.

    View Publication Page
    06/07/10 | Reproductive constraints, direct fitness and indirect fitness benefits explain helping behaviour in the primitively eusocial wasp, Polistes canadensis.
    Sumner S, Kelstrup H, Fanelli D
    Proceedings. Biological Sciences / The Royal Society. 2010 Jun 7;277:1721-8. doi: 10.1098/rspb.2009.2289

    A key step in the evolution of sociality is the abandonment of independent breeding in favour of helping. In cooperatively breeding vertebrates and primitively eusocial insects, helpers are capable of leaving the group and reproducing independently, and yet many do not. A fundamental question therefore is why do helpers help? Helping behaviour may be explained by constraints on independent reproduction and/or benefits to individuals from helping. Here, we examine simultaneously the reproductive constraints and fitness benefits underlying helping behaviour in a primitively eusocial paper wasp. We gave 31 helpers the opportunity to become egg-layers on their natal nests by removing nestmates. This allowed us to determine whether helpers are reproductively constrained in any way. We found that age strongly influenced whether an ex-helper could become an egg-layer, such that young ex-helpers could become egg-layers while old ex-helpers were less able. These differential reproductive constraints enabled us to make predictions about the behaviours of ex-helpers, depending on the relative importance of direct and indirect fitness benefits. We found little evidence that indirect fitness benefits explain helping behaviour, as 71 per cent of ex-helpers left their nests before the end of the experiment. In the absence of reproductive constraints, however, young helpers value direct fitness opportunities over indirect fitness. We conclude that a combination of reproductive constraints and potential for future direct reproduction explain helping behaviour in this species. Testing several competing explanations for helping behaviour simultaneously promises to advance our understanding of social behaviour in animal groups.

    View Publication Page
    Cardona LabSaalfeld Lab
    06/02/10 | Identifying neuronal lineages of Drosophila by sequence analysis of axon tracts.
    Cardona A, Saalfeld S, Arganda I, Pereanu W, Schindelin J, Hartenstein V
    The Journal of Neuroscience. 2010 Jun 2;30(22):7538-53. doi: 10.1523/JNEUROSCI.0186-10.2010

    The Drosophila brain is formed by an invariant set of lineages, each of which is derived from a unique neural stem cell (neuroblast) and forms a genetic and structural unit of the brain. The task of reconstructing brain circuitry at the level of individual neurons can be made significantly easier by assigning neurons to their respective lineages. In this article we address the automation of neuron and lineage identification. We focused on the Drosophila brain lineages at the larval stage when they form easily recognizable secondary axon tracts (SATs) that were previously partially characterized. We now generated an annotated digital database containing all lineage tracts reconstructed from five registered wild-type brains, at higher resolution and including some that were previously not characterized. We developed a method for SAT structural comparisons based on a dynamic programming approach akin to nucleotide sequence alignment and a machine learning classifier trained on the annotated database of reference SATs. We quantified the stereotypy of SATs by measuring the residual variability of aligned wild-type SATs. Next, we used our method for the identification of SATs within wild-type larval brains, and found it highly accurate (93-99%). The method proved highly robust for the identification of lineages in mutant brains and in brains that differed in developmental time or labeling. We describe for the first time an algorithm that quantifies neuronal projection stereotypy in the Drosophila brain and use the algorithm for automatic neuron and lineage recognition.

    View Publication Page
    Magee LabHarris Lab
    06/01/10 | Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal.
    Royer S, Zemelman BV, Barbic M, Losonczy A, Buzsáki G, Magee JC
    The European Journal of Neuroscience. 2010 Jun;31:2279-91. doi: 10.1002/cbic.201000254

    Recordings of large neuronal ensembles and neural stimulation of high spatial and temporal precision are important requisites for studying the real-time dynamics of neural networks. Multiple-shank silicon probes enable large-scale monitoring of individual neurons. Optical stimulation of genetically targeted neurons expressing light-sensitive channels or other fast (milliseconds) actuators offers the means for controlled perturbation of local circuits. Here we describe a method to equip the shanks of silicon probes with micron-scale light guides for allowing the simultaneous use of the two approaches. We then show illustrative examples of how these compact hybrid electrodes can be used in probing local circuits in behaving rats and mice. A key advantage of these devices is the enhanced spatial precision of stimulation that is achieved by delivering light close to the recording sites of the probe. When paired with the expression of light-sensitive actuators within genetically specified neuronal populations, these devices allow the relatively straightforward and interpretable manipulation of network activity.

    View Publication Page
    Looger Lab
    06/01/10 | Near-isotropic 3D optical nanoscopy with photon-limited chromophores.
    Tang J, Akerboom J, Vaziri A, Looger LL, Shank CV
    Proceedings of the National Academy of Sciences of the United States of America. 2010 Jun 1;107(22):10068-73. doi: 10.1073/pnas.1004899107

    Imaging approaches based on single molecule localization break the diffraction barrier of conventional fluorescence microscopy, allowing for bioimaging with nanometer resolution. It remains a challenge, however, to precisely localize photon-limited single molecules in 3D. We have developed a new localization-based imaging technique achieving almost isotropic subdiffraction resolution in 3D. A tilted mirror is used to generate a side view in addition to the front view of activated single emitters, allowing their 3D localization to be precisely determined for superresolution imaging. Because both front and side views are in focus, this method is able to efficiently collect emitted photons. The technique is simple to implement on a commercial fluorescence microscope, and especially suitable for biological samples with photon-limited chromophores such as endogenously expressed photoactivatable fluorescent proteins. Moreover, this method is relatively resistant to optical aberration, as it requires only centroid determination for localization analysis. Here we demonstrate the application of this method to 3D imaging of bacterial protein distribution and neuron dendritic morphology with subdiffraction resolution.

    View Publication Page
    06/01/10 | Software for bead-based registration of selective plane illumination microscopy data.
    Preibisch S, Saalfeld S, Schindelin J, Tomancak P
    Nature Methods. 2010 Jun;7(6):418-9. doi: 10.1038/nmeth0610-418
    05/30/10 | A wireless neural/EMG telemetry system for freely moving insects.
    Reid R. Harrison , Ryan J. Kier , Anthony Leonardo , Haleh Fotowat , Raymond Chan , Fabrizio Gabbiani
    IEEE International Symposium on Circuits and Systems. 2010 May 30:. doi: 10.1109/ISCAS.2010.5538034

    We have developed a miniature telemetry system that captures neural, EMG, and acceleration signals from a freely moving insect and transmits the data wirelessly to a remote digital receiver. The system is based on a custom low-power integrated circuit that amplifies and digitizes four biopotential signals as well as three acceleration signals from an off-chip MEMS accelerometer, and transmits this information over a wireless 920-MHz telemetry link. The unit weighs 0.79 g and runs for two hours on two small batteries. We have used this system to monitor neural and EMG signals in jumping and flying locusts.

    View Publication Page
    Gonen Lab
    05/17/10 | Cooperation of the Dam1 and Ndc80 kinetochore complexes enhances microtubule coupling and is regulated by aurora B.
    Tien JF, Umbreit NT, Gestaut DR, Franck AD, Cooper J, Wordeman L, Gonen T, Asbury CL, Davis TN
    The Journal of Cell Biology. 2010 May 17;189(4):713-23. doi: 10.1083/jcb.200910142

    The coupling of kinetochores to dynamic spindle microtubules is crucial for chromosome positioning and segregation, error correction, and cell cycle progression. How these fundamental attachments are made and persist under tensile forces from the spindle remain important questions. As microtubule-binding elements, the budding yeast Ndc80 and Dam1 kinetochore complexes are essential and not redundant, but their distinct contributions are unknown. In this study, we show that the Dam1 complex is a processivity factor for the Ndc80 complex, enhancing the ability of the Ndc80 complex to form load-bearing attachments to and track with dynamic microtubule tips in vitro. Moreover, the interaction between the Ndc80 and Dam1 complexes is abolished when the Dam1 complex is phosphorylated by the yeast aurora B kinase Ipl1. This provides evidence for a mechanism by which aurora B resets aberrant kinetochore-microtubule attachments. We propose that the action of the Dam1 complex as a processivity factor in kinetochore-microtubule attachment is regulated by conserved signals for error correction.

    View Publication Page
    05/12/10 | IP3 receptor sensitization during in vivo amphetamine experience enhances NMDA receptor plasticity in dopamine neurons of the ventral tegmental area.
    Ahn K, Bernier BE, Harnett MT, Morikawa H
    The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2010 May 12;30:6689-99. doi: 10.1523/JNEUROSCI.4453-09.2010

    Synaptic plasticity in the mesolimbic dopamine (DA) system is critically involved in reward-based conditioning and the development of drug addiction. Ca2+ signals triggered by postsynaptic action potentials (APs) drive the induction of synaptic plasticity in the CNS. However, it is not clear how AP-evoked Ca2+ signals and the resulting synaptic plasticity are altered during in vivo exposure to drugs of abuse. We have recently described long-term potentiation (LTP) of NMDA receptor (NMDAR)-mediated transmission onto DA neurons that is induced in a manner dependent on bursts of APs. LTP induction requires amplification of burst-evoked Ca2+ signals by preceding activation of metabotropic glutamate receptors (mGluRs) generating inositol 1,4,5-trisphosphate (IP3). In this study, using brain slices prepared from male rats, we show that repeated in vivo exposure to the psychostimulant amphetamine (5 mg/kg, i.p., 3-7 d) upregulates mGluR-dependent facilitation of burst-evoked Ca2+ signals in DA neurons of the ventral tegmental area (VTA). Protein kinase A (PKA)-induced sensitization of IP3 receptors mediates this upregulation of mGluR action. As a consequence, NMDAR-mediated transmission becomes more susceptible to LTP induction after repeated amphetamine exposure. We have also found that the magnitude of amphetamine-conditioned place preference (CPP) in behaving rats correlates with the magnitude of mGluR-dependent Ca2+ signal facilitation measured in VTA slices prepared from these rats. Furthermore, the development of amphetamine CPP is significantly attenuated by intra-VTA infusion of the PKA inhibitor H89. We propose that enhancement of mGluR-dependent NMDAR plasticity in the VTA may promote the learning of environmental stimuli repeatedly associated with amphetamine experience.

    View Publication Page
    05/01/10 | Drosophila fly straight by fixating objects in the face of expanding optic flow.
    Reiser MB, Dickinson MH
    The Journal of Experimental Biology. 2010 May;213(Pt 10):1771-81. doi: 10.1016/j.cub.2010.06.072

    Flies, like all animals that depend on vision to navigate through the world, must integrate the optic flow created by self-motion with the images generated by prominent features in their environment. Although much is known about the responses of Drosophila melanogaster to rotating flow fields, their reactions to the more complex patterns of motion that occur as they translate through the world are not well understood. In the present study we explore the interactions between two visual reflexes in Drosophila: object fixation and expansion avoidance. As a fly flies forward, it encounters an expanding visual flow field. However, recent results have demonstrated that Drosophila strongly turn away from patterns of expansion. Given the strength of this reflex, it is difficult to explain how flies make forward progress through a visual landscape. This paradox is partially resolved by the finding reported here that when undergoing flight directed towards a conspicuous object, Drosophila will tolerate a level of expansion that would otherwise induce avoidance. This navigation strategy allows flies to fly straight when orienting towards prominent visual features.

    View Publication Page