Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

151 Publications

Showing 61-70 of 151 results
Your Criteria:
    07/24/14 | Looking under the lamp post: neither fruitless nor doublesex has evolved to generate divergent male courtship in Drosophila.
    Cande J, Stern DL, Morita T, Prud'homme B, Gompel N
    Cell Reports. 2014 Jul 24;8(2):363-70. doi: 10.1016/j.celrep.2014.06.023

    How do evolved genetic changes alter the nervous system to produce different patterns of behavior? We address this question using Drosophila male courtship behavior, which is innate, stereotyped, and evolves rapidly between species. D. melanogaster male courtship requires the male-specific isoforms of two transcription factors, fruitless and doublesex. These genes underlie genetic switches between female and male behaviors, making them excellent candidate genes for courtship behavior evolution. We tested their role in courtship evolution by transferring the entire locus for each gene from divergent species to D. melanogaster. We found that despite differences in Fru+ and Dsx+ cell numbers in wild-type species, cross-species transgenes rescued D. melanogaster courtship behavior and no species-specific behaviors were conferred. Therefore, fru and dsx are not a significant source of evolutionary variation in courtship behavior.

    View Publication Page
    06/26/14 | Reported Drosophila courtship song rhythms are artifacts of data analysis.
    Stern DL
    BMC Biology. 2014 Jun 26;12:38. doi: 10.1186/1741-7007-12-38

    BACKGROUND: In a series of landmark papers, Kyriacou, Hall, and colleagues reported that the average inter-pulse interval of Drosophila melanogaster male courtship song varies rhythmically (KH cycles), that the period gene controls this rhythm, and that evolution of the period gene determines species differences in the rhythm's frequency. Several groups failed to recover KH cycles, but this may have resulted from differences in recording chamber size.

    RESULTS: Here, using recording chambers of the same dimensions as used by Kyriacou and Hall, I found no compelling evidence for KH cycles at any frequency. By replicating the data analysis procedures employed by Kyriacou and Hall, I found that two factors--data binned into 10-second intervals and short recordings--imposed non-significant periodicity in the frequency range reported for KH cycles. Randomized data showed similar patterns.

    CONCLUSIONS: All of the results related to KH cycles are likely to be artifacts of binning data from short songs. Reported genotypic differences in KH cycles cannot be explained by this artifact and may have resulted from the use of small sample sizes and/or from the exclusion of samples that did not exhibit song rhythms.

    View Publication Page
    02/03/14 | Cellular and behavioral functions of fruitless isoforms in Drosophila courtship.
    von Philipsborn AC, Jörchel S, Tirian L, Demir E, Morita T, Stern DL, Dickson BJ
    Current Biology . 2014 Feb 3;24:242-51. doi: 10.1016/j.cub.2013.12.015

    BACKGROUND: Male-specific products of the fruitless (fru) gene control the development and function of neuronal circuits that underlie male-specific behaviors in Drosophila, including courtship. Alternative splicing generates at least three distinct Fru isoforms, each containing a different zinc-finger domain. Here, we examine the expression and function of each of these isoforms. RESULTS: We show that most fru(+) cells express all three isoforms, yet each isoform has a distinct function in the elaboration of sexually dimorphic circuitry and behavior. The strongest impairment in courtship behavior is observed in fru(C) mutants, which fail to copulate, lack sine song, and do not generate courtship song in the absence of visual stimuli. Cellular dimorphisms in the fru circuit are dependent on Fru(C) rather than other single Fru isoforms. Removal of Fru(C) from the neuronal classes vAB3 or aSP4 leads to cell-autonomous feminization of arborizations and loss of courtship in the dark. CONCLUSIONS: These data map specific aspects of courtship behavior to the level of single fru isoforms and fru(+) cell types-an important step toward elucidating the chain of causality from gene to circuit to behavior.

    View Publication Page
    12/19/13 | The structure and evolution of cis-regulatory regions: the shavenbaby story.
    Stern DL, Frankel N
    Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 2013 Dec 19;368(1632):20130028. doi: 10.1098/rstb.2013.0028

    In this paper, we provide a historical account of the contribution of a single line of research to our current understanding of the structure of cis-regulatory regions and the genetic basis for morphological evolution. We revisit the experiments that shed light on the evolution of larval cuticular patterns within the genus Drosophila and the evolution and structure of the shavenbaby gene. We describe the experiments that led to the discovery that multiple genetic changes in the cis-regulatory region of shavenbaby caused the loss of dorsal cuticular hairs (quaternary trichomes) in first instar larvae of Drosophila sechellia. We also discuss the experiments that showed that the convergent loss of quaternary trichomes in D. sechellia and Drosophila ezoana was generated by parallel genetic changes in orthologous enhancers of shavenbaby. We discuss the observation that multiple shavenbaby enhancers drive overlapping patterns of expression in the embryo and that these apparently redundant enhancers ensure robust shavenbaby expression and trichome morphogenesis under stressful conditions. All together, these data, collected over 13 years, provide a fundamental case study in the fields of gene regulation and morphological evolution, and highlight the importance of prolonged, detailed studies of single genes.

    View Publication Page
    11/14/13 | Motor control of Drosophila courtship song.
    Shirangi TR, Stern DL, Truman JW
    Cell Reports. 2013 Nov 14;5:678-86. doi: 10.1016/j.celrep.2013.09.039

    Many animals utilize acoustic signals-or songs-to attract mates. During courtship, Drosophila melanogaster males vibrate a wing to produce trains of pulses and extended tone, called pulse and sine song, respectively. Courtship songs in the genus Drosophila are exceedingly diverse, and different song features appear to have evolved independently of each other. How the nervous system allows such diversity to evolve is not understood. Here, we identify a wing muscle in D. melanogaster (hg1) that is uniquely male-enlarged. The hg1 motoneuron and the sexually dimorphic development of the hg1 muscle are required specifically for the sine component of the male song. In contrast, the motoneuron innervating a sexually monomorphic wing muscle, ps1, is required specifically for a feature of pulse song. Thus, individual wing motor pathways can control separate aspects of courtship song and may provide a "modular" anatomical substrate for the evolution of diverse songs.

    View Publication Page
    10/09/13 | The genetic causes of convergent evolution.
    Stern DL
    Nature Reviews Genetics. 2013 Oct 9;14(11):751-4. doi: 10.1038/nrg3483advance online publication

    The evolution of phenotypic similarities between species, known as convergence, illustrates that populations can respond predictably to ecological challenges. Convergence often results from similar genetic changes, which can emerge in two ways: the evolution of similar or identical mutations in independent lineages, which is termed parallel evolution; and the evolution in independent lineages of alleles that are shared among populations, which I call collateral genetic evolution. Evidence for parallel and collateral evolution has been found in many taxa, and an emerging hypothesis is that they result from the fact that mutations in some genetic targets minimize pleiotropic effects while simultaneously maximizing adaptation. If this proves correct, then the molecular changes underlying adaptation might be more predictable than has been appreciated previously.

    View Publication Page
    06/30/13 | TALE-mediated modulation of transcriptional enhancers in vivo.
    Crocker J, Stern DL
    Nature Methods. 2013 Jun 30;10(8):762-7. doi: 10.1038/nmeth.2543

    We tested whether transcription activator-like effectors (TALEs) could mediate repression and activation of endogenous enhancers in the Drosophila genome. TALE repressors (TALERs) targeting each of the five even-skipped (eve) stripe enhancers generated repression specifically of the focal stripes. TALE activators (TALEAs) targeting the eve promoter or enhancers caused increased expression primarily in cells normally activated by the promoter or targeted enhancer, respectively. This effect supports the view that repression acts in a dominant fashion on transcriptional activators and that the activity state of an enhancer influences TALE binding or the ability of the VP16 domain to enhance transcription. In these assays, the Hairy repression domain did not exhibit previously described long-range transcriptional repression activity. The phenotypic effects of TALER and TALEA expression in larvae and adults are consistent with the observed modulations of eve expression. TALEs thus provide a novel tool for detection and functional modulation of transcriptional enhancers in their native genomic context.

    View Publication Page
    01/31/13 | Multi-channel acoustic recording and automated analysis of Drosophila courtship songs.
    Arthur BJ, Sunayama-Morita T, Coen P, Murthy M, Stern DL
    BMC Biology. 2013 Jan 31;11:11. doi: 10.1186/1741-7007-11-11

    Drosophila melanogaster has served as a powerful model system for genetic studies of courtship songs. To accelerate research on the genetic and neural mechanisms underlying courtship song, we have developed a sensitive recording system to simultaneously capture the acoustic signals from 32 separate pairs of courting flies as well as software for automated segmentation of songs.

    View Publication Page
    04/01/13 | Potential Patterning Differences Underlying Oviparous and Viviparous Development in the Pea Aphid
    R Bickel , H Cleveland , J Barkas , N Belletier , DL Stern , GK Davis
    Society for Integrative and Comparative Biology. 01/2013;53:E247-E247

    The pea aphid, Acyrthosiphon pisum, exhibits several environmentally cued, discrete, alternate phenotypes (polyphenisms) during its life cycle. In the case of the reproductive polyphenism, differences in day length determine whether mothers will produce daughters that reproduce either sexually by laying fertilized eggs (oviparous sexual reproduction), or asexually by allowing oocytes to complete embryogenesis within the mother without fertilization (viviparous parthenogenesis). Oocytes and embryos that are produced asexually develop more rapidly, are yolk-free, and much smaller than oocytes and embryos that are produced sexually. Perhaps most striking, the process of oocyte differentiation is truncated in the case of asexual/viviparous development, potentially precluding interactions between the oocyte and surrounding follicle cells that might take place during sexual/oviparous development. Given the important patterning roles that oocyte-follicle cell interactions play in Drosophila, these overt differences suggest that there may be underlying differences in the molecular mechanisms of pattern formation. We have found differences in the expression of homologs of torso-like and tailless, as well as activated MAP kinase, suggesting that there are important differences in the hemipteran version of the terminal patterning system between viviparous and oviparous development. Establishing such differences in the expression of patterning genes between these developmental modes is a first step toward understanding how a single genome manages to direct patterning events in such different embryological contexts.

    View Publication Page
    05/01/12 | Genetic architecture and adaptive significance of the selfing syndrome in Capsella.
    Slotte T, Hazzouri KM, Stern D, Andolfatto P, Wright SI
    Evolution: International Journal of Organic Evolution. 2012 May;66(5):1360-74. doi: 10.1111/j.1558-5646.2011.01540.x

    The transition from outcrossing to predominant self-fertilization is one of the most common evolutionary transitions in flowering plants. This shift is often accompanied by a suite of changes in floral and reproductive characters termed the selfing syndrome. Here, we characterize the genetic architecture and evolutionary forces underlying evolution of the selfing syndrome in Capsella rubella following its recent divergence from the outcrossing ancestor C. grandiflora. We conduct genotyping by multiplexed shotgun sequencing and map floral and reproductive traits in a large (N= 550) F2 population. Our results suggest that in contrast to previous studies of the selfing syndrome, changes at a few loci, some with major effects, have shaped the evolution of the selfing syndrome in Capsella. The directionality of QTL effects, as well as population genetic patterns of polymorphism and divergence at 318 loci, is consistent with a history of directional selection on the selfing syndrome. Our study is an important step toward characterizing the genetic basis and evolutionary forces underlying the evolution of the selfing syndrome in a genetically accessible model system.

    View Publication Page