Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

190 Publications

Showing 11-20 of 190 results
Your Criteria:
    12/07/11 | Together we are stronger: fusion protects mitochondria from autophagosomal degradation.
    Rambold AS, Kostelecky B, Lippincott-Schwartz J
    Autophagy. 2011 Dec;7(12):1568-9

    Starvation induces a protective process of self-cannibalization called autophagy that is thought to mediate nonselective degradation of cytoplasmic material. We recently reported that mitochondria escape autophagosomal degradation through extensive fusion into mitochondrial networks upon certain starvation conditions. The extent of mitochondrial elongation is dependent on the type of nutrient deprivation, with amino acid depletion having a particularly strong effect. Downregulation of the mitochondrial fission protein Drp1 was determined to be important in bringing about starvation-induced mitochondrial fusion. The formation of mitochondrial networks during nutrient depletion selectively blocked their autophagic degradation, presumably allowing cells to sustain efficient ATP production and thereby survive starvation.

    View Publication Page
    12/04/11 | Bayesian localization microscopy reveals nanoscale podosome dynamics.
    Cox S, Rosten E, Monypenny J, Jovanovic-Talisman T, Burnette DT, Lippincott-Schwartz J, Jones GE, Heintzmann R
    Nature methods. 2012 Feb;9(2):195-200. doi: 10.1038/nmeth.1812

    We describe a localization microscopy analysis method that is able to extract results in live cells using standard fluorescent proteins and xenon arc lamp illumination. Our Bayesian analysis of the blinking and bleaching (3B analysis) method models the entire dataset simultaneously as being generated by a number of fluorophores that may or may not be emitting light at any given time. The resulting technique allows many overlapping fluorophores in each frame and unifies the analysis of the localization from blinking and bleaching events. By modeling the entire dataset, we were able to use each reappearance of a fluorophore to improve the localization accuracy. The high performance of this technique allowed us to reveal the nanoscale dynamics of podosome formation and dissociation throughout an entire cell with a resolution of 50 nm on a 4-s timescale.

    View Publication Page
    Looger LabSchreiter Lab
    12/02/11 | Structure of the escherichia coli phosphonate binding protein PhnD and rationally optimized phosphonate biosensors.
    Alicea I, Marvin JS, Miklos AE, Ellington AD, Looger LL, Schreiter ER
    Journal of Molecular Biology. 2011 Dec 2;414(3):356-69. doi: 10.1016/j.jmb.2011.09.047

    The phnD gene of Escherichia coli encodes the periplasmic binding protein of the phosphonate (Pn) uptake and utilization pathway. We have crystallized and determined structures of E. coli PhnD (EcPhnD) in the absence of ligand and in complex with the environmentally abundant 2-aminoethylphosphonate (2AEP). Similar to other bacterial periplasmic binding proteins, 2AEP binds near the center of mass of EcPhnD in a cleft formed between two lobes. Comparison of the open, unliganded structure with the closed 2AEP-bound structure shows that the two lobes pivot around a hinge by \~{}70° between the two states. Extensive hydrogen bonding and electrostatic interactions stabilize 2AEP, which binds to EcPhnD with low nanomolar affinity. These structures provide insight into Pn uptake by bacteria and facilitated the rational design of high signal-to-noise Pn biosensors based on both coupled small-molecule dyes and autocatalytic fluorescent proteins.

    View Publication Page
    12/01/11 | A critical role of mitochondrial phosphatase Ptpmt1 in embryogenesis reveals a mitochondrial metabolic stress-induced differentiation checkpoint in embryonic stem cells.
    Shen J, Liu X, Yu W, Liu J, Nibbelink MG, Guo C, Finkel T, Qu C
    Molecular and Cellular Biology. 2011 Dec;31:4902-16. doi: 10.1128/MCB.05629-11

    Mitochondria are highly dynamic organelles that play multiple roles in cells. How mitochondria cooperatively modulate embryonic stem (ES) cell function during development is not fully understood. Global disruption of Ptpmt1, a mitochondrial Pten-like phosphatidylinositol phosphate (PIP) phosphatase, resulted in developmental arrest and postimplantation lethality. Ptpmt1(-/-) blastocysts failed to outgrow, and inner-cell-mass cells failed to thrive. Depletion of Ptpmt1 in conditional knockout ES cells decreased proliferation without affecting energy homeostasis or cell survival. Differentiation of Ptpmt1-depleted ES cells was essentially blocked. This was accompanied by upregulation of cyclin-dependent kinase inhibitors and a significant cell cycle delay. Reintroduction of wild-type but not of catalytically deficient Ptpmt1 C132S or truncated Ptpmt1 lacking the mitochondrial localization signal restored the differentiation capabilities of Ptpmt1 knockout ES cells. Intriguingly, Ptpmt1 is specifically important for stem cells, as ablation of Ptpmt1 in differentiated embryonic fibroblasts did not disturb cellular function. Further analyses demonstrated that oxygen consumption of Ptpmt1-depleted cells was decreased, while glycolysis was concomitantly enhanced. In addition, mitochondrial fusion/dynamics were compromised in Ptpmt1 knockout cells due to accumulation of PIPs. These studies, while establishing a crucial role for Ptpmt1 phosphatase in embryogenesis, reveal a mitochondrial metabolic stress-activated checkpoint in the control of ES cell differentiation.

    View Publication Page
    12/01/11 | Advances in the chemistry of small molecule fluorescent probes.
    Wysocki LM, Lavis LD
    Current Opinion in Chemical Biology. 2011 Dec;15(6):752-9. doi: 10.1016/j.cbpa.2011.10.013

    Small molecule fluorophores are essential tools for chemical biology. A benefit of synthetic dyes is the ability to employ chemical approaches to control the properties and direct the position of the fluorophore. Applying modern synthetic organic chemistry strategies enables efficient tailoring of the chemical structure to obtain probes for specific biological experiments. Chemistry can also be used to activate fluorophores; new fluorogenic enzyme substrates and photoactivatable compounds with improved properties have been prepared that facilitate advanced imaging experiments with low background fluorescence. Finally, chemical reactions in live cells can be used to direct the spatial distribution of the fluorophore, allowing labeling of defined cellular regions with synthetic dyes.

    View Publication Page
    12/01/11 | Associative learning between odorants and mechanosensory punishment in larval Drosophila.
    Eschbach C, Cano C, Haberkern H, Schraut K, Guan C, Triphan T, Gerber B
    Journal of Expiremental Biology. 2011 Dec 1;214(Pt 23):3897-905. doi: 10.1242/jeb.060533

    We tested whether Drosophila larvae can associate odours with a mechanosensory disturbance as a punishment, using substrate vibration conveyed by a loudspeaker (buzz:). One odour (A) was presented with the buzz, while another odour (B) was presented without the buzz (A/B training). Then, animals were offered the choice between A and B. After reciprocal training (A/B), a second experimental group was tested in the same way. We found that larvae show conditioned escape from the previously punished odour. We further report an increase of associative performance scores with the number of punishments, and an increase according to the number of training cycles. Within the range tested (between 50 and 200 Hz), however, the pitch of the buzz does not apparently impact associative success. Last, but not least, we characterized odour-buzz memories with regard to the conditions under which they are behaviourally expressed--or not. In accordance with what has previously been found for associative learning between odours and bad taste (such as high concentration salt or quinine), we report that conditioned escape after odour-buzz learning is disabled if escape is not warranted, i.e. if no punishment to escape from is present during testing. Together with the already established paradigms for the association of odour and bad taste, the present assay offers the prospect of analysing how a relatively simple brain orchestrates memory and behaviour with regard to different kinds of 'bad' events.

    View Publication Page
    Singer Lab
    12/01/11 | Cotranscriptional effect of a premature termination codon revealed by live-cell imaging.
    de Turris V, Nicholson P, Orozco RZ, Singer RH, Mühlemann O
    RNA. 2011 Dec;17(12):2094-107. doi: 10.1261/rna.02918111

    Aberrant mRNAs with premature translation termination codons (PTCs) are recognized and eliminated by the nonsense-mediated mRNA decay (NMD) pathway in eukaryotes. We employed a novel live-cell imaging approach to investigate the kinetics of mRNA synthesis and release at the transcription site of PTC-containing (PTC+) and PTC-free (PTC-) immunoglobulin-μ reporter genes. Fluorescence recovery after photobleaching (FRAP) and photoconversion analyses revealed that PTC+ transcripts are specifically retained at the transcription site. Remarkably, the retained PTC+ transcripts are mainly unspliced, and this RNA retention is dependent upon two important NMD factors, UPF1 and SMG6, since their depletion led to the release of the PTC+ transcripts. Finally, ChIP analysis showed a physical association of UPF1 and SMG6 with both the PTC+ and the PTC- reporter genes in vivo. Collectively, our data support a mechanism for regulation of PTC+ transcripts at the transcription site.

    View Publication Page
    12/01/11 | Mechanisms of mitochondria and autophagy crosstalk.
    Rambold AS, Lippincott-Schwartz J
    Cell cycle (Georgetown, Tex.). 2011 Dec 1;10(23):4032-8. doi: 10.4161/cc.10.23.18384

    Autophagy is a cellular survival pathway that recycles intracellular components to compensate for nutrient depletion and ensures the appropriate degradation of organelles. Mitochondrial number and health are regulated by mitophagy, a process by which excessive or damaged mitochondria are subjected to autophagic degradation. Autophagy is thus a key determinant for mitochondrial health and proper cell function. Mitophagic malfunction has been recently proposed to contribute to progressive neuronal loss in Parkinson's disease. In addition to autophagy's significance in mitochondrial integrity, several lines of evidence suggest that mitochondria can also substantially influence the autophagic process. The mitochondria's ability to influence and be influenced by autophagy places both elements (mitochondria and autophagy) in a unique position where defects in one or the other system could increase the risk to various metabolic and autophagic related diseases.

    View Publication Page
    12/01/11 | Met and gce are functionally redundant in transducing the “status quo” action of juvenile hormone in Drosophila.
    Abdou M, He Q, Wen D, Zyaan O, Wang J, Xu J, Baumann A, Joseph J, WIlson T, Li S, Wang J
    Insect Biochemistry and Molecular Biology. 2011 Dec;41(12):938-45. doi: 10.1016/j.ibmb.2011.09.003

    The Drosophila Methoprene-tolerant (Met) and Germ cell-expressed (Gce) bHLH-PAS transcription factors are products of two paralogous genes. Both proteins potentially mediate the effect of juvenile hormone (JH) as candidate JH receptors. Here we report that Met and Gce are partially redundant in transducing JH action. Both Met and gce null single mutants are fully viable, but the Met gce double mutant, Met(27) gce(2.5k), dies during the larval-pupal transition. Precocious and enhanced caspase-dependent programmed cell death (PCD) appears in fat body cells of Met(27) gce(2.5k) during the early larval stages. Expression of Kr-h1, a JH response gene that inhibits 20-hydroxyecdysone (20E)-induced broad (br) expression, is abolished in Met(27) gce(2.5k) during larval molts. Consequently, expression of br occurs precociously in Met(27) gce(2.5k), which may cause precocious caspase-dependent PCD during the early larval stages. Defective phenotypes and gene expression changes in Met(27) gce(2.5k) double mutants are similar to those found in JH-deficient animals. Importantly, exogenous application of JH agonists rescued the JH-deficient animals but not the Met(27) gce(2.5k) mutants. Our data suggest a model in which Drosophila Met and Gce redundantly transduce JH action to prevent 20E-induced caspase-dependent PCD during larval molts by induction of Kr-h1 expression and inhibition of br expression.

    View Publication Page
    12/01/11 | Super-resolution 3D microscopy of live whole cells using structured illumination.
    Shao L, Kner P, Rego EH, Gustafsson MG
    Nature Methods. 2011 Dec;8:1044-6. doi: 10.1038/nmeth.1734

    Three-dimensional (3D) structured-illumination microscopy (SIM) can double the lateral and axial resolution of a wide-field fluorescence microscope but has been too slow for live imaging. Here we apply 3D SIM to living samples and record whole cells at up to 5 s per volume for >50 time points with 120-nm lateral and 360-nm axial resolution. We demonstrate the technique by imaging microtubules in S2 cells and mitochondria in HeLa cells.

    View Publication Page