Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

187 Publications

Showing 51-60 of 187 results
Your Criteria:
    Kainmueller Lab
    10/01/12 | Automatic detection and classification of teeth in CT data.
    Duy NT, Lamecker H, Kainmueller D, Zachow S
    Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention. 2012;15(Pt 1):609-16

    We propose a fully automatic method for tooth detection and classification in CT or cone-beam CT image data. First we compute an accurate segmentation of the maxilla bone. Based on this segmentation, our method computes a complete and optimal separation of the row of teeth into 16 subregions and classifies the resulting regions as existing or missing teeth. This serves as a prerequisite for further individual tooth segmentation. We show the robustness of our approach by providing extensive validation on 43 clinical head CT scans.

    View Publication Page
    Cui Lab
    10/01/12 | Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy.
    Si K, Fiolka R, Cui M
    Scientific Reports. 2012 Oct;2:748. doi: doi:10.1038/srep00748

    Optical microscopy has so far been restricted to superficial layers, leaving many important biological questions unanswered. Random scattering causes the ballistic focus, which is conventionally used for image formation, to decay exponentially with depth. Optical imaging beyond the ballistic regime has been demonstrated by hybrid techniques that combine light with the deeper penetration capability of sound waves. Deep inside highly scattering media, the sound focus dimensions restrict the imaging resolutions. Here we show that by iteratively focusing light into an ultrasound focus via phase conjugation, we can fundamentally overcome this resolution barrier in deep tissues and at the same time increase the focus to background ratio. We demonstrate fluorescence microscopy beyond the ballistic regime of light with a threefold improved resolution and a fivefold increase in contrast. This development opens up practical high resolution fluorescence imaging in deep tissues.

    View Publication Page
    10/01/12 | Cell type-specific genomics of Drosophila neurons.
    Henry GL, Davis FP, Picard S, Eddy SR
    Nucleic Acids Research. 2012 Oct;40(19):9691-704. doi: 10.1093/nar/gks671

    Many tools are available to analyse genomes but are often challenging to use in a cell type-specific context. We have developed a method similar to the isolation of nuclei tagged in a specific cell type (INTACT) technique [Deal,R.B. and Henikoff,S. (2010) A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev. Cell, 18, 1030-1040; Steiner,F.A., Talbert,P.B., Kasinathan,S., Deal,R.B. and Henikoff,S. (2012) Cell-type-specific nuclei purification from whole animals for genome-wide expression and chromatin profiling. Genome Res., doi:10.1101/gr.131748.111], first developed in plants, for use in Drosophila neurons. We profile gene expression and histone modifications in Kenyon cells and octopaminergic neurons in the adult brain. In addition to recovering known gene expression differences, we also observe significant cell type-specific chromatin modifications. In particular, a small subset of differentially expressed genes exhibits a striking anti-correlation between repressive and activating histone modifications. These genes are enriched for transcription factors, recovering those known to regulate mushroom body identity and predicting analogous regulators of octopaminergic neurons. Our results suggest that applying INTACT to specific neuronal populations can illuminate the transcriptional regulatory networks that underlie neuronal cell identity.

    View Publication Page
    10/01/12 | Optimal noise reduction in 3D reconstructions of single particles using a volume-normalized filter.
    Sindelar CV, Grigorieff N
    Journal of Structural Biology. 2012 Oct;180:26-38. doi: 10.1016/j.jsb.2012.05.005

    The high noise level found in single-particle electron cryo-microscopy (cryo-EM) image data presents a special challenge for three-dimensional (3D) reconstruction of the imaged molecules. The spectral signal-to-noise ratio (SSNR) and related Fourier shell correlation (FSC) functions are commonly used to assess and mitigate the noise-generated error in the reconstruction. Calculation of the SSNR and FSC usually includes the noise in the solvent region surrounding the particle and therefore does not accurately reflect the signal in the particle density itself. Here we show that the SSNR in a reconstructed 3D particle map is linearly proportional to the fractional volume occupied by the particle. Using this relationship, we devise a novel filter (the "single-particle Wiener filter") to minimize the error in a reconstructed particle map, if the particle volume is known. Moreover, we show how to approximate this filter even when the volume of the particle is not known, by optimizing the signal within a representative interior region of the particle. We show that the new filter improves on previously proposed error-reduction schemes, including the conventional Wiener filter as well as figure-of-merit weighting, and quantify the relationship between all of these methods by theoretical analysis as well as numeric evaluation of both simulated and experimentally collected data. The single-particle Wiener filter is applicable across a broad range of existing 3D reconstruction techniques, but is particularly well suited to the Fourier inversion method, leading to an efficient and accurate implementation.

    View Publication Page
    10/01/12 | Tissue-specific activation of a single gustatory receptor produces opposing behavioral responses in Drosophila.
    Joseph RM, Heberlein U
    Genetics. 2012 Oct;192(2):521-32. doi: 10.1534/genetics.112.142455

    Understanding sensory systems that perceive environmental inputs and neural circuits that select appropriate motor outputs is essential for studying how organisms modulate behavior and make decisions necessary for survival. Drosophila melanogaster oviposition is one such important behavior, in which females evaluate their environment and choose to lay eggs on substrates they may find aversive in other contexts. We employed neurogenetic techniques to characterize neurons that influence the choice between repulsive positional and attractive egg-laying responses toward the bitter-tasting compound lobeline. Surprisingly, we found that neurons expressing Gr66a, a gustatory receptor normally involved in avoidance behaviors, receive input for both attractive and aversive preferences. We hypothesized that these opposing responses may result from activation of distinct Gr66a-expressing neurons. Using tissue-specific rescue experiments, we found that Gr66a-expressing neurons on the legs mediate positional aversion. In contrast, pharyngeal taste cells mediate the egg-laying attraction to lobeline, as determined by analysis of mosaic flies in which subsets of Gr66a neurons were silenced. Finally, inactivating mushroom body neurons disrupted both aversive and attractive responses, suggesting that this brain structure is a candidate integration center for decision-making during Drosophila oviposition. We thus define sensory and central neurons critical to the process by which flies decide where to lay an egg. Furthermore, our findings provide insights into the complex nature of gustatory perception in Drosophila. We show that tissue-specific activation of bitter-sensing Gr66a neurons provides one mechanism by which the gustatory system differentially encodes aversive and attractive responses, allowing the female fly to modulate her behavior in a context-dependent manner.

    View Publication Page
    Druckmann Lab
    09/17/12 | A hierarchical structure of cortical interneuron electrical diversity revealed by automated statistical analysis.
    Druckmann S, Hill S, Schürmann F, Markram H, Segev I
    Cerebral Cortex. 2012 Sep 17;23(12):2994-3006. doi: 10.1093/cercor/bhs290

    Although the diversity of cortical interneuron electrical properties is well recognized, the number of distinct electrical types (e-types) is still a matter of debate. Recently, descriptions of interneuron variability were standardized by multiple laboratories on the basis of a subjective classification scheme as set out by the Petilla convention (Petilla Interneuron Nomenclature Group, PING). Here, we present a quantitative, statistical analysis of a database of nearly five hundred neurons manually annotated according to the PING nomenclature. For each cell, 38 features were extracted from responses to suprathreshold current stimuli and statistically analyzed to examine whether cortical interneurons subdivide into e-types. We showed that the partitioning into different e-types is indeed the major component of data variability. The analysis suggests refining the PING e-type classification to be hierarchical, whereby most variability is first captured within a coarse subpartition, and then subsequently divided into finer subpartitions. The coarse partition matches the well-known partitioning of interneurons into fast spiking and adapting cells. Finer subpartitions match the burst, continuous, and delayed subtypes. Additionally, our analysis enabled the ranking of features according to their ability to differentiate among e-types. We showed that our quantitative e-type assignment is more than 90% accurate and manages to catch several human errors.

    View Publication Page
    Looger LabSvoboda Lab
    09/13/12 | Activity in motor-sensory projections reveals distributed coding in somatosensation.
    Petreanu L, Gutnisky DA, Huber D, Xu N, O’Connor DH, Tian L, Looger L, Svoboda K
    Nature. 2012 Sep 13;489:299-303. doi: 10.1038/nature11321

    Cortical-feedback projections to primary sensory areas terminate most heavily in layer 1 (L1) of the neocortex, where they make synapses with tuft dendrites of pyramidal neurons. L1 input is thought to provide ‘contextual’ information, but the signals transmitted by L1 feedback remain uncharacterized. In the rodent somatosensory system, the spatially diffuse feedback projection from vibrissal motor cortex (vM1) to vibrissal somatosensory cortex (vS1, also known as the barrel cortex) may allow whisker touch to be interpreted in the context of whisker position to compute object location. When mice palpate objects with their whiskers to localize object features, whisker touch excites vS1 and later vM1 in a somatotopic manner. Here we use axonal calcium imaging to track activity in vM1–>vS1 afferents in L1 of the barrel cortex while mice performed whisker-dependent object localization. Spatially intermingled individual axons represent whisker movements, touch and other behavioural features. In a subpopulation of axons, activity depends on object location and persists for seconds after touch. Neurons in the barrel cortex thus have information to integrate movements and touches of multiple whiskers over time, key components of object identification and navigation by active touch.

    View Publication Page
    09/11/12 | Ultrabithorax confers spatial identity in a context-specific manner in the Drosophila postembryonic ventral nervous system.
    Marin EC, Dry KE, Alaimo DR, Rudd KT, Cillo AR, Clenshaw ME, Negre N, White KP, Truman JW
    Neural Development. 2012 Sep 11;7:31. doi: 10.1186/1749-8104-7-31

    BACKGROUND: In holometabolous insects such as Drosophila melanogaster, neuroblasts produce an initial population of diverse neurons during embryogenesis and a much larger set of adult-specific neurons during larval life. In the ventral CNS, many of these secondary neuronal lineages differ significantly from one body segment to another, suggesting a role for anteroposterior patterning genes. RESULTS: Here we systematically characterize the expression pattern and function of the Hox gene Ultrabithorax (Ubx) in all 25 postembryonic lineages. We find that Ubx is expressed in a segment-, lineage-, and hemilineage-specific manner in the thoracic and anterior abdominal segments. When Ubx is removed from neuroblasts via mitotic recombination, neurons in these segments exhibit the morphologies and survival patterns of their anterior thoracic counterparts. Conversely, when Ubx is ectopically expressed in anterior thoracic segments, neurons exhibit complementary posterior transformation phenotypes. CONCLUSION: Our findings demonstrate that Ubx plays a critical role in conferring segment-appropriate morphology and survival on individual neurons in the adult-specific ventral CNS. Moreover, while always conferring spatial identity in some sense, Ubx has been co-opted during evolution for distinct and even opposite functions in different neuronal hemilineages.

    View Publication Page
    09/06/12 | Dopamine neurons modulate pheromone responses in Drosophila courtship learning.
    Keleman K, Vrontou E, Krüttner S, Yu JY, Kurtovic-Kozaric A, Dickson BJ
    Nature. 2012 Sep 6;489(7414):145-9. doi: 10.1038/nature11345

    Learning through trial-and-error interactions allows animals to adapt innate behavioural ‘rules of thumb’ to the local environment, improving their prospects for survival and reproduction. Naive Drosophila melanogaster males, for example, court both virgin and mated females, but learn through experience to selectively suppress futile courtship towards females that have already mated. Here we show that courtship learning reflects an enhanced response to the male pheromone cis-vaccenyl acetate (cVA), which is deposited on females during mating and thus distinguishes mated females from virgins. Dissociation experiments suggest a simple learning rule in which unsuccessful courtship enhances sensitivity to cVA. The learning experience can be mimicked by artificial activation of dopaminergic neurons, and we identify a specific class of dopaminergic neuron that is critical for courtship learning. These neurons provide input to the mushroom body (MB) γ lobe, and the DopR1 dopamine receptor is required in MBγ neurons for both natural and artificial courtship learning. Our work thus reveals critical behavioural, cellular and molecular components of the learning rule by which Drosophila adjusts its innate mating strategy according to experience.

    View Publication Page
    09/01/12 | The structural basis for the narrow substrate specificity of an acetyl esterase from Thermotoga maritima.
    Hedge MK, Gehring AM, Adkins CT, Weston LA, Lavis LD, Johnson RJ
    Biochimica et Biophysica Acta. 2012 Sep;1824(9):1024-30. doi: 10.1016/j.bbapap.2012.05.009

    Acetyl esterases from carbohydrate esterase family 7 exhibit unusual substrate specificity. These proteins catalyze the cleavage of disparate acetate esters with high efficiency, but are unreactive to larger acyl groups. The structural basis for this distinct selectivity profile is unknown. Here, we investigate a thermostable acetyl esterase (TM0077) from Thermotoga maritima using evolutionary relationships, structural information, fluorescent kinetic measurements, and site directed mutagenesis. We measured the kinetic and structural determinants for this specificity using a diverse series of small molecule enzyme substrates, including novel fluorogenic esters. These experiments identified two hydrophobic plasticity residues (Pro228, and Ile276) surrounding the nucleophilic serine that impart this specificity of TM0077 for small, straight-chain esters. Substitution of these residues with alanine imparts broader specificity to TM0077 for the hydrolysis of longer and bulkier esters. Our results suggest the specificity of acetyl esterases have been finely tuned by evolution to catalyze the removal of acetate groups from diverse substrates, but can be modified by focused amino acid substitutions to yield enzymes capable of cleaving larger ester functionalities.

    View Publication Page