Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block

Type of Publication

general_search_page-panel_pane_1 | views_panes

2547 Publications

Showing 2131-2140 of 2547 results
Your Criteria:
    Looger LabSvoboda LabLeonardo LabSchreiter LabGENIE
    02/01/13 | An optimized fluorescent probe for visualizing glutamate neurotransmission.
    Marvin JS, Borghuis BG, Tian L, Cichon J, Harnett MT, Akerboom J, Gordus A, Renninger SL, Chen T, Bargmann CI, Orger MB, Schreiter ER, Demb JB, Gan W, Hires SA, Looger LL
    Nature Methods. 2013 Feb;10:162-70. doi: 10.1038/nmeth.2333

    We describe an intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) with signal-to-noise ratio and kinetics appropriate for in vivo imaging. We engineered iGluSnFR in vitro to maximize its fluorescence change, and we validated its utility for visualizing glutamate release by neurons and astrocytes in increasingly intact neurological systems. In hippocampal culture, iGluSnFR detected single field stimulus-evoked glutamate release events. In pyramidal neurons in acute brain slices, glutamate uncaging at single spines showed that iGluSnFR responds robustly and specifically to glutamate in situ, and responses correlate with voltage changes. In mouse retina, iGluSnFR-expressing neurons showed intact light-evoked excitatory currents, and the sensor revealed tonic glutamate signaling in response to light stimuli. In worms, glutamate signals preceded and predicted postsynaptic calcium transients. In zebrafish, iGluSnFR revealed spatial organization of direction-selective synaptic activity in the optic tectum. Finally, in mouse forelimb motor cortex, iGluSnFR expression in layer V pyramidal neurons revealed task-dependent single-spine activity during running.

    View Publication Page
    Zlatic Lab
    02/01/13 | Cbl-associated protein regulates assembly and function of two tension-sensing structures in Drosophila.
    Bharadwaj R, Roy M, Ohyama T, Sivan-Loukianova E, Delannoy M, Lloyd TE, Zlatic M, Eberl DF, Kolodkin AL
    Development. 2013 Feb 1;140:627-38. doi: 10.1242/dev.085100

    Cbl-associated protein (CAP) localizes to focal adhesions and associates with numerous cytoskeletal proteins; however, its physiological roles remain unknown. Here, we demonstrate that Drosophila CAP regulates the organization of two actin-rich structures in Drosophila: muscle attachment sites (MASs), which connect somatic muscles to the body wall; and scolopale cells, which form an integral component of the fly chordotonal organs and mediate mechanosensation. Drosophila CAP mutants exhibit aberrant junctional invaginations and perturbation of the cytoskeletal organization at the MAS. CAP depletion also results in collapse of scolopale cells within chordotonal organs, leading to deficits in larval vibration sensation and adult hearing. We investigate the roles of different CAP protein domains in its recruitment to, and function at, various muscle subcellular compartments. Depletion of the CAP-interacting protein Vinculin results in a marked reduction in CAP levels at MASs, and vinculin mutants partially phenocopy Drosophila CAP mutants. These results show that CAP regulates junctional membrane and cytoskeletal organization at the membrane-cytoskeletal interface of stretch-sensitive structures, and they implicate integrin signaling through a CAP/Vinculin protein complex in stretch-sensitive organ assembly and function.

    View Publication Page
    02/01/13 | Fast and robust optical flow for time-lapse microscopy using super-voxels.
    Amat F, Myers EW, Keller PJ
    Bioinformatics. 2013 Feb;29(3):373-80. doi: 10.1093/bioinformatics/bts706

    Optical flow is a key method used for quantitative motion estimation of biological structures in light microscopy. It has also been used as a key module in segmentation and tracking systems and is considered a mature technology in the field of computer vision. However, most of the research focused on 2D natural images, which are small in size and rich in edges and texture information. In contrast, 3D time-lapse recordings of biological specimens comprise up to several terabytes of image data and often exhibit complex object dynamics as well as blurring due to the point-spread-function of the microscope. Thus, new approaches to optical flow are required to improve performance for such data. We solve optical flow in large 3D time-lapse microscopy datasets by defining a Markov random field (MRF) over super-voxels in the foreground and applying motion smoothness constraints between super-voxels instead of voxel-wise. This model is tailored to the specific characteristics of light microscopy datasets: super-voxels help registration in textureless areas, the MRF over super-voxels efficiently propagates motion information between neighboring cells and the background subtraction and super-voxels reduce the dimensionality of the problem by an order of magnitude. We validate our approach on large 3D time-lapse datasets of Drosophila and zebrafish development by analyzing cell motion patterns. We show that our approach is, on average, 10 x faster than commonly used optical flow implementations in the Insight Tool-Kit (ITK) and reduces the average flow end point error by 50% in regions with complex dynamic processes, such as cell divisions.

    View Publication Page
    Gonen Lab
    02/01/13 | HCV IRES manipulates the ribosome to promote the switch from translation initiation to elongation.
    Filbin ME, Vollmar BS, Shi D, Gonen T, Kieft JS
    Nature Structural & Molecular Biology. 2013 Feb;20(2):150-8. doi: 10.1038/nsmb.2465

    The internal ribosome entry site (IRES) of the hepatitis C virus (HCV) drives noncanonical initiation of protein synthesis necessary for viral replication. Functional studies of the HCV IRES have focused on 80S ribosome formation but have not explored its role after the 80S ribosome is poised at the start codon. Here, we report that mutations of an IRES domain that docks in the 40S subunit’s decoding groove cause only a local perturbation in IRES structure and result in conformational changes in the IRES-rabbit 40S subunit complex. Functionally, the mutations decrease IRES activity by inhibiting the first ribosomal translocation event, and modeling results suggest that this effect occurs through an interaction with a single ribosomal protein. The ability of the HCV IRES to manipulate the ribosome provides insight into how the ribosome’s structure and function can be altered by bound RNAs, including those derived from cellular invaders.

    View Publication Page
    02/01/13 | Intensity discrimination deficits cause habituation changes in middle-aged Caenorhabditis elegans.
    Timbers TA, Giles AC, Ardiel EL, Kerr RA, Rankin CH
    Neurobiology of Aging. 2013 Feb;34(2):621-31. doi: 10.1016/j.neurobiolaging.2012.03.016

    The ability to learn and remember is critical for all animals to survive in the ever-changing environment. As we age, many of our biological faculties decay and of these, decline in learning and memory can be the most distressing. To carefully define age-dependent changes in learning during reproductive age in the nematode Caenorhabditis elegans, we performed a parametric behavioral study of habituation to nonlocalized mechanical stimuli (petri plate taps) over a range of intensities in middle-aged worms. We found that as worms age (from the onset of reproduction to the end of egg laying), response probability habituation increases (at both 10- and 60-second interstimulus intervals) and that these age-related changes were associated with a decrease in the discrimination between stimuli of different intensities. We also used optogenetics to investigate where these age-dependent changes occur. Our data suggest that the changes occur upstream of mechanosensory neuron depolarization. These data support the idea that declines in stimulus intensity discrimination abilities during aging may be one variable underlying age-related cognitive deficits.

    View Publication Page
    02/01/13 | Optogenetics in a transparent animal: circuit function in the larval zebrafish.
    Portugues R, Severi KE, Wyart C, Ahrens MB
    Current Opinion in Neurobiology. 2013 Feb;23(1):119-26. doi: 10.1016/j.conb.2012.11.001

    Optogenetic tools can be used to manipulate neuronal activity in a reversible and specific manner. In recent years, such methods have been applied to uncover causal relationships between activity in specified neuronal circuits and behavior in the larval zebrafish. In this small, transparent, genetic model organism, noninvasive manipulation and monitoring of neuronal activity with light is possible throughout the nervous system. Here we review recent work in which these new tools have been applied to zebrafish, and discuss some of the existing challenges of these approaches.

    View Publication Page
    01/31/13 | Multi-channel acoustic recording and automated analysis of Drosophila courtship songs.
    Arthur BJ, Sunayama-Morita T, Coen P, Murthy M, Stern DL
    BMC Biology. 2013 Jan 31;11:11. doi: 10.1186/1741-7007-11-11

    Drosophila melanogaster has served as a powerful model system for genetic studies of courtship songs. To accelerate research on the genetic and neural mechanisms underlying courtship song, we have developed a sensitive recording system to simultaneously capture the acoustic signals from 32 separate pairs of courting flies as well as software for automated segmentation of songs.

    View Publication Page
    01/23/13 | Multiple interactions control synaptic layer specificity in the Drosophila visual system.
    Pecot MY, Tadros W, Nern A, Bader M, Chen Y, Zipursky SL
    Neuron. 2013 Jan 23;77(2):299-310. doi: 10.1016/j.neuron.2012.11.007

    How neurons form synapses within specific layers remains poorly understood. In the Drosophila medulla, neurons target to discrete layers in a precise fashion. Here we demonstrate that the targeting of L3 neurons to a specific layer occurs in two steps. Initially, L3 growth cones project to a common domain in the outer medulla, overlapping with the growth cones of other neurons destined for a different layer through the redundant functions of N-Cadherin (CadN) and Semaphorin-1a (Sema-1a). CadN mediates adhesion within the domain and Sema-1a mediates repulsion through Plexin A (PlexA) expressed in an adjacent region. Subsequently, L3 growth cones segregate from the domain into their target layer in part through Sema-1a/PlexA-dependent remodeling. Together, our results and recent studies argue that the early medulla is organized into common domains, comprising processes bound for different layers, and that discrete layers later emerge through successive interactions between processes within domains and developing layers.

    View Publication Page
    01/15/13 | Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions.
    Legant WR, Choi CK, Miller JS, Shao L, Gao L, Betzig E, Chen CS
    Proceedings of the National Academy of Sciences of the United States of America. 2013 Jan 15;110(3):881-6. doi: 10.1073/pnas.1207997110

    Recent methods have revealed that cells on planar substrates exert both shear (in-plane) and normal (out-of-plane) tractions against the extracellular matrix (ECM). However, the location and origin of the normal tractions with respect to the adhesive and cytoskeletal elements of cells have not been elucidated. We developed a high-spatiotemporal-resolution, multidimensional (2.5D) traction force microscopy to measure and model the full 3D nature of cellular forces on planar 2D surfaces. We show that shear tractions are centered under elongated focal adhesions whereas upward and downward normal tractions are detected on distal (toward the cell edge) and proximal (toward the cell body) ends of adhesions, respectively. Together, these forces produce significant rotational moments about focal adhesions in both protruding and retracting peripheral regions. Temporal 2.5D traction force microscopy analysis of migrating and spreading cells shows that these rotational moments are highly dynamic, propagating outward with the leading edge of the cell. Finally, we developed a finite element model to examine how rotational moments could be generated about focal adhesions in a thin lamella. Our model suggests that rotational moments can be generated largely via shear lag transfer to the underlying ECM from actomyosin contractility applied at the intracellular surface of a rigid adhesion of finite thickness. Together, these data demonstrate and probe the origin of a previously unappreciated multidimensional stress profile associated with adhesions and highlight the importance of new approaches to characterize cellular forces.

    View Publication Page
    Svoboda Lab
    01/09/13 | Organization of cortical and thalamic input to pyramidal neurons in mouse motor cortex.
    Hooks BM, Mao T, Gutnisky DA, Yamawaki N, Svoboda K, Shepherd GM
    The Journal of Neuroscience. 2013 Jan 9;33(2):748-60. doi: 10.1523/JNEUROSCI.4338-12.2013

    Determining how long-range synaptic inputs engage pyramidal neurons in primary motor cortex (M1) is important for understanding circuit mechanisms involved in regulating movement. We used channelrhodopsin-2-assisted circuit mapping to characterize the long-range excitatory synaptic connections made by multiple cortical and thalamic areas onto pyramidal neurons in mouse vibrissal motor cortex (vM1). Each projection innervated vM1 pyramidal neurons with a unique laminar profile. Collectively, the profiles for different sources of input partially overlapped and spanned all cortical layers. Specifically, orbital cortex (OC) inputs primarily targeted neurons in L6. Secondary motor cortex (M2) inputs excited neurons mainly in L5B, including pyramidal tract neurons. In contrast, thalamocortical inputs from anterior motor-related thalamic regions, including VA/VL (ventral anterior thalamic nucleus/ventrolateral thalamic nucleus), targeted neurons in L2/3 through L5B, but avoided L6. Inputs from posterior sensory-related thalamic areas, including POm (posterior thalamic nuclear group), targeted neurons only in the upper layers (L2/3 and L5A), similar to inputs from somatosensory (barrel) cortex. Our results show that long-range excitatory inputs target vM1 pyramidal neurons in a layer-specific manner. Inputs from sensory-related cortical and thalamic areas preferentially target the upper-layer pyramidal neurons in vM1. In contrast, inputs from OC and M2, areas associated with volitional and cognitive aspects of movements, bypass local circuitry and have direct monosynaptic access to neurons projecting to brainstem and thalamus.

    View Publication Page