Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block

Type of Publication

general_search_page-panel_pane_1 | views_panes

1404 Publications

Showing 1321-1330 of 1404 results
Your Criteria:
    06/04/94 | Mechanisms shaping glutamate-mediated excitatory postsynaptic currents in the CNS.
    Jonas P, Spruston N
    Curr Opin Neurobiol. 1994 Jun;4(3):366-72

    Excitatory postsynaptic currents in neurones of the central nervous system have a dual-component time course that results from the co-activation of AMPA/kainate-type and NMDA-type glutamate receptors. New approaches in electrophysiology and molecular biology have provided a better understanding of the factors that determine the kinetics of excitatory postsynaptic currents. Recent studies suggest that the time course of neurotransmitter concentration in the synaptic cleft, the gating properties of the native channels, and the glutamate receptor subunit composition all appear to be important factors.

    View Publication Page
    05/23/94 | A phylogenetic analysis of soldier evolution in the aphid family Hormaphididae.
    Stern DL
    Proc Biol Sci. 1994 May 23;256(1346):203-9. doi: 10.1098/rspb.1994.0071

    Aphid soldiers, altruistic larvae that protect the colony from predators, are an example of highly social behaviour in an insect group with a natural history different from the eusocial Hymenoptera and Isoptera. Aphids therefore allow independent tests of theory developed to explain the evolution of eusociality. Although soldiers have been discovered in five tribes from two families, the number and pattern of origins and losses of soldiers is unknown due to a lack of phylogenetic data. Here I present a mtDNA based phylogeny for the Hormaphididae, and test the hypothesis that soldiers in the tribe Cerataphidini produced during two points in the life cycle represent independent origins. The results support this hypothesis. In addition, a minimum of five evolutionary events, either four origins and one loss or five origins, are required to explain the distribution of soldiers in the family. The positions of the origins and losses are well resolved, and this phylogeny provides an historical framework for studies on the causes of soldier aphid evolution.

    View Publication Page
    05/06/94 | The Drosophila peanut gene is required for cytokinesis and encodes a protein similar to yeast putative bud neck filament proteins.
    Neufeld TP, Rubin GM
    Cell. 1994 May 6;77(3):371-9. doi: 10.1186/gb-2007-8-7-r145

    We have identified a Drosophila gene, peanut (pnut), that is related in sequence to the CDC3, CDC10, CDC11, and CDC12 genes of S. cerevisiae. These genes are required for cytokinesis, and their products are present at the bud neck during cell division. We find that pnut is also required for cytokinesis: in pnut mutants, imaginal tissues fail to proliferate and instead develop clusters of large, multinucleate cells. Pnut protein is localized to the cleavage furrow of dividing cells during cytokinesis and to the intercellular bridge connecting postmitotic daughter cells. In addition to its role in cytokinesis, pnut displays genetic interactions with seven in absentia, a gene required for neuronal fate determination in the compound eye, suggesting that pnut may have pleiotropic functions. Our results suggest that this class of proteins is involved in aspects of cytokinesis that have been conserved between flies and yeast.

    View Publication Page
    04/18/94 | Dimensions of luminescent oxidized and porous silicon structures.
    Schuppler S, Friedman S, Marcus M, Adler D, Xie Y, Ross F, Harris TD, Brown W, Chabal Y, Brus L, Citrin P
    Physical Review Letters. 1994 Apr 18;72(16):2648-51

    X-ray absorption measurements from H-passivated porous Si and from oxidized Si nanocrystals, combined with electron microscopy, ir absorption, α recoil, and luminescence emission data, provide a consistent structural picture of the species responsible for the visible luminescence observed in these samples. The mass-weighted average structures in por-Si are particles, not wires, with dimensions significantly smaller than previously reported or proposed.

    View Publication Page
    04/17/94 | Dendritic attenuation of synaptic potentials and currents: the role of passive membrane properties.
    Spruston N, Jaffe DB, Johnston D
    Trends Neurosci. 1994 Apr;17(4):161-6

    The dendritic trees of neurons are structurally and functionally complex integrative units receiving thousands of synaptic inputs that have excitatory and inhibitory, fast and slow, and electrical and biochemical effects. The pattern of activation of these synaptic inputs determines if the neuron will fire an action potential at any given point in time and how it will respond to similar inputs in the future. Two critical factors affect the integrative function of dendrites: the distribution of voltage-gated ion channels in the dendritic tree and the passive electrical properties, or 'electrotonic structure', upon which these active channels are superimposed. The authors review recent data from patch-clamp recordings that provide new estimates of the passive membrane properties of hippocampal neurons, and show, with examples, how these properties affect the shaping and attenuation of synaptic potentials as they propagate in the dendrites, as well as how they affect the measurement of current from synapses located in the dendrites. Voltage-gated channels might influence the measurement of 'passive' membrane properties and, reciprocally, passive membrane properties might affect the activation of voltage-gated channels in dendrites.

    View Publication Page
    Baker Lab
    01/01/94 | Behavioral and neurobiological implications of sex-determining factors in Drosophila.
    Baker B, Taylor B, Villella. A. , Ryner L, Hall J
    Developmental. Genetics. 1994;15(3):275-96

    The function of the central nervous system as it controls sex-specific behaviors in Drosophila has been studied with renewed intensity, in the context of genetic factors that influence the development of sexually differentiated aspects of this insect. Three categories of genetic variations that cause anomalies in courtship and mating behaviors are discussed: (1) mutants isolated with regard to courtship defects, of which putatively courtship-specific variants such as the fruitless mutant are a subset; (2) general behavioral and neurological variants (including sensory and learning mutants), whose defects include subnormal reproductive performance; and (3) mutations of genes within the sex-determination regulatory hierarchy of Drosophila, the analysis of which has included studies of reproductive behavior. Recent studies of mutations in two of these categories have provided new insights into the control of neuronally based aspects of sex-specific behavior. The doublesex gene, the final factor acting in the sex-determination hierarchy, had been previously thought to regulate all aspects of sexual differentiation. Yet, it has been recently shown that doublesex does not control at least one neuronally-determined feature of sex-specific anatomy--a muscle in the male's abdomen, whose normal development is, however, dependent on the action of fruitless. These considerations prompted us to examine further (and in some cases re-examine) the influences exerted by sex-determination hierarchy genes on behavior. Our results--notably those obtained from assessments of doublesex mutations' effects on general reproductive actions and on a particular component of the courtship sequence (male "singing" behavior)--lead to the suggestion that there is a previously unrecognized branch within the sex-determination hierarchy, which controls the differentiation of the male- and female- specific phenotypes of Drosophila. This new branch separates from the doublesex-related one immediately before the action of that gene (just after transformer and transformer-2) and appears to control as least some aspects of neuronally determined sexual differentiation of males.

    View Publication Page
    12/03/93 | The TGF beta homolog dpp and the segment polarity gene hedgehog are required for propagation of a morphogenetic wave in the Drosophila retina.
    Heberlein U, Wolff T, Rubin GM
    Cell. 1993 Dec 3;75(5):913-26. doi: 10.1186/gb-2007-8-7-r145

    Development of the Drosophila retina occurs asynchronously; differentiation, its front marked by the morphogenetic furrow, progresses across the eye disc epithelium over a 2 day period. We have investigated the mechanism by which this front advances, and our results suggest that developing retinal cells drive the progression of morphogenesis utilizing the products of the hedgehog (hh) and decapentaplegic (dpp) genes. Analysis of hh and dpp genetic mosaics indicates that the products of these genes act as diffusible signals in this process. Expression of dpp in the morphogenetic furrow is closely correlated with the progression of the furrow under a variety of conditions. We show that hh, synthesized by differentiating cells, induces the expression of dpp, which appears to be a primary mediator of furrow movement.

    View Publication Page
    12/01/93 | Nonfloral sources of chemicals that attract male euglossine bees (Apidae: Euglossini).
    Whitten WM, Young AM, Stern DL
    J Chem Ecol. 1993 Dec;19(12):3017-27. doi: 10.1007/BF00980599

    We present chemical analysis of four rotten or fungus-infected logs that attracted fragrance-collecting male euglossine bees. Eight of the 10 volatile compounds detected have never been found in the fragrances of orchids pollinated by male euglossine bees. Nonfloral sources of chemicals such as rotting wood may constitute an important fragrance resource for male bees. Since rotten logs produce large quantities of chemicals over long periods of time, such nonfloral sources might be more important than flowers as a source of certain fragrances for some euglossine bee species. Fragrance collecting in euglossine bees might have evolved originally in relation with rotting wood rather than flowers.

    View Publication Page
    11/26/93 | Single molecules observed by near-field scanning optical microscopy. (With commentary)
    Betzig E, Chichester RJ
    Science. 1993 Nov 26;262:1422-5. doi: 10.1126/science.262.5138.1422

    Individual carbocyanine dye molecules in a sub-monolayer spread have been imaged with near-field scanning optical microscopy. Molecules can be repeatedly detected and spatially localized (to approximately lambda/50 where lambda is the wavelength of light) with a sensitivity of at least 0.005 molecules/(Hz)(1/2) and the orientation of each molecular dipole can be determined. This information is exploited to map the electric field distribution in the near-field aperture with molecular spatial resolution.

    Commentary: A paper of many firsts: the first single molecule microscopy; the first extended observations of single molecules under ambient conditions; the first localization of single molecules to near-molecular precision ( 15 nm), the first determination of the dipole axes of single fluorescent molecules; and the first near-molecular resolution optical microscopy, when a single fluorescent molecule was used to map the evanescent electric field components in the vicinity of a 100 nm diameter near-field aperture. Although eventually supplanted by simpler far-field methods, this paper ushered in the era of single molecule imaging and biophysics, and inspired the concept that would eventually lead to PALM. Even today, near-field single molecule detection lives on in the “zero mode waveguide” sequencing approach promoted by Pacific Biosciences.

    View Publication Page
    Baker Lab
    11/01/93 | Sex-lethal, master and slave: the hierarchy of germline sex determination in Drosophila.
    Baker B, Oliver B, Kim YJ
    Development. 1993 Nov;119(3):897-908

    Female sex determination in the germ line of Drosophila melanogaster is regulated by genes functioning in the soma as well as genes that function within the germ line. Genes known or suspected to be involved in germ-line sex determination in Drosophila melanogaster have been examined to determine if they are required upstream or downstream of Sex-lethal+, a known germ-line sex determination gene. Seven genes required for female-specific splicing of germ-line Sex-lethal+ pre-mRNA are identified. These results together with information about the tissues in which these genes function and whether they control sex determination and viability or just sex determination in the germ line have been used to deduce the genetic hierarchy regulating female germ-line sex determination. This hierarchy includes the somatic sex determination genes transformer+, transformer-2+ and doublesex+ (and by inference Sex-lethal+), which control a somatic signal required for female germ-line sex determination, and the germ-line ovarian tumor genes fused+, ovarian tumor+, ovo+, sans fille+, and Sex-lethal+, which are involved in either the reception or interpretation of this somatic sex determination signal. The fused+, ovarian tumor+, ovo+ and sans fille+ genes function upstream of Sex-lethal+ in the germ line.

    View Publication Page