Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

152 Publications

Showing 71-80 of 152 results
Your Criteria:
    02/01/10 | Genome sequence of the pea aphid Acyrthosiphon pisum.
    PLoS Biology. 2010 Feb;8(2):e1000313. doi: 10.1371/journal.pbio.1000313

    Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems.

    View Publication Page
    05/01/06 | High-resolution quantitative trait locus mapping reveals sign epistasis controlling ovariole number between two Drosophila species.
    Orgogozo V, Broman KW, Stern DL
    Genetics. 2006 May;173(1):197-205. doi: 10.1534/genetics.105.054098

    Identifying the genes underlying genetically complex traits is of fundamental importance for medicine, agriculture, and evolutionary biology. However, the level of resolution offered by traditional quantitative trait locus (QTL) mapping is usually coarse. We analyze here a trait closely related to fitness, ovariole number. Our initial interspecific mapping between Drosophila sechellia (8 ovarioles/ovary) and D. simulans (15 ovarioles/ovary) identified a major QTL on chromosome 3 and a minor QTL on chromosome 2. To refine the position of the major QTL, we selected 1038 additional recombinants in the region of interest using flanking morphological markers (selective phenotyping). This effort generated approximately one recombination event per gene and increased the mapping resolution by approximately seven times. Our study thus shows that using visible markers to select for recombinants can efficiently increase the resolution of QTL mapping. We resolved the major QTL into two epistatic QTL, QTL3a and QTL3b. QTL3a shows sign epistasis: it has opposite effects in two different genetic backgrounds, the presence vs. the absence of the QTL3b D. sechellia allele. This property of QTL3a allows us to reconstruct the probable order of fixation of the QTL alleles during evolution.

    View Publication Page
    12/03/14 | Identification of loci that cause phenotypic variation in diverse species with the reciprocal hemizygosity test.
    Stern DL
    Trends in Genetics. 2014 Dec;30(12):547-554. doi: 10.1016/j.tig.2014.09.006

    The reciprocal hemizygosity test is a straightforward genetic test that can positively identify genes that have evolved to contribute to a phenotypic difference between strains or between species. The test involves a comparison between hybrids that are genetically identical throughout the genome except at the test locus, which is rendered hemizygous for alternative alleles from the two parental strains. If the two reciprocal hemizygotes display different phenotypes, then the two parental alleles must have evolved. New methods for targeted mutagenesis will allow application of the reciprocal hemizygosity test in many organisms. This review discusses the principles, advantages, and limitations of the test.

    View Publication Page
    12/01/07 | Internal and external constraints in the evolution of morphological allometries in a butterfly.
    Frankino WA, Zwaan BJ, Stern DL, Brakefield PM
    Evolution. 2007 Dec;61(12):2958-70. doi: 10.1111/j.1558-5646.2007.00249.x

    Much diversity in animal morphology results from variation in the relative size of morphological traits. The scaling relationships, or allometries, that describe relative trait size can vary greatly in both intercept and slope among species or other animal groups. Yet within such groups, individuals typically exhibit low variation in relative trait size. This pattern of high intra- and low intergroup variation may result from natural selection for particular allometries, from developmental constraints restricting differential growth among traits, or both. Here we explore the relative roles of short-term developmental constraints and natural selection in the evolution of the intercept of the allometry between the forewing and hindwing of a butterfly. First, despite a strong genetic correlation between these two traits, we show that artificial selection perpendicular to the forewing-hindwing scaling relationship results in rapid evolution of the allometry intercept. This demonstrates an absence of developmental constraints limiting intercept evolution for this scaling relationship. Mating experiments in a natural environment revealed strong stabilizing selection favoring males with the wild-type allometry intercept over those with derived intercepts. Our results demonstrate that evolution of this component of the forewing-hindwing allometry is not limited by developmental constraints in the short term and that natural selection on allometry intercepts can be powerful.

    View Publication Page
    04/01/12 | Investigation of the role of Aubergine RNA-binding proteins in the reproductive plasticity of the pea aphid, Acyrthosiphon pisum
    A Abdelhady , R Cortes , S Musumeci , D Srinivasan , S Shigenobu , D Stern , S Kobayashi
    Society for Integrative and Comparative Biology. 01/2012;52:E202-E202

    Environmental changes can elicit alterations in the form, behavior and/or physiology of all species, and this developmental response to environment is known as phenotypic plasticity. Despite its ubiquity, the molecular basis for phenotypic plasticity is not fully understood. The pea aphid, Acyrthosiphon pisum, serves as a model for an extreme form of phenotypic plasticity, known as polyphenism. Changes in photoperiod stimulate a switch in female aphid reproductive mode from asexual to sexual reproduction over the course of one generation without changes in genotype. This reproductive polyphenism results in female aphids with ovaries of one of two types: sexual ovaries (producing haploid oocytes via meiosis), or asexual ovaries (producing identical diploid aphid clones via parthenogenesis). To better understand how aphid ovaries could produce different outputs, we surveyed the transcriptomes of sexual and asexual ovaries using RNA-seq. Among genes that exhibited greater than two-fold differences in gene expression between sexual and asexual ovaries, we identified several aubergine paralogs, which encode for germline-specific members of the Argonaute small RNA-binding protein family. The A. pisum genome contains eight aubergine paralogs and at least two piwi paralogs. We are currently comparing the expression patterns of these aphid aubergine paralogs between asexual and sexual aphid ovaries. Aubergine proteins in other species are thought to help suppress the activity of transposable elements, which are found in high quantities throughout the A. pisum genome. Together, these experiments will help elucidate a potential relationship between aubergine paralogs and aphid reproductive plasticity.

    View Publication Page
    02/06/09 | Is genetic evolution predictable?
    Stern DL, Orgogozo V
    Science. 2009 Feb 6;323:746-51. doi: 10.1126/science.1158997

    Ever since the integration of Mendelian genetics into evolutionary biology in the early 20th century, evolutionary geneticists have for the most part treated genes and mutations as generic entities. However, recent observations indicate that all genes are not equal in the eyes of evolution. Evolutionarily relevant mutations tend to accumulate in hotspot genes and at specific positions within genes. Genetic evolution is constrained by gene function, the structure of genetic networks, and population biology. The genetic basis of evolution may be predictable to some extent, and further understanding of this predictability requires incorporation of the specific functions and characteristics of genes into evolutionary theory.

    View Publication Page
    03/10/06 | Large-scale gene discovery in the pea aphid Acyrthosiphon pisum (Hemiptera).
    Sabater-Muñoz B, Legeai F, Rispe C, Bonhomme J, Dearden P, Dossat C, Duclert A, Gauthier J, Ducray DG, Hunter W, Dang P, Kambhampati S, Martinez-Torres D, Cortes T, Moya A, Nakabachi A, Philippe C, Prunier-Leterme N, Rahbé Y, Simon J, Stern DL, Wincker P, Tagu D
    Genome Biol. 2006;7(3):R21. doi: 10.1186/gb-2006-7-3-r21

    Aphids are the leading pests in agricultural crops. A large-scale sequencing of 40,904 ESTs from the pea aphid Acyrthosiphon pisum was carried out to define a catalog of 12,082 unique transcripts. A strong AT bias was found, indicating a compositional shift between Drosophila melanogaster and A. pisum. An in silico profiling analysis characterized 135 transcripts specific to pea-aphid tissues (relating to bacteriocytes and parthenogenetic embryos). This project is the first to address the genetics of the Hemiptera and of a hemimetabolous insect.

    View Publication Page
    07/24/14 | Looking under the lamp post: neither fruitless nor doublesex has evolved to generate divergent male courtship in Drosophila.
    Cande J, Stern DL, Morita T, Prud'homme B, Gompel N
    Cell Reports. 2014 Jul 24;8(2):363-70. doi: 10.1016/j.celrep.2014.06.023

    How do evolved genetic changes alter the nervous system to produce different patterns of behavior? We address this question using Drosophila male courtship behavior, which is innate, stereotyped, and evolves rapidly between species. D. melanogaster male courtship requires the male-specific isoforms of two transcription factors, fruitless and doublesex. These genes underlie genetic switches between female and male behaviors, making them excellent candidate genes for courtship behavior evolution. We tested their role in courtship evolution by transferring the entire locus for each gene from divergent species to D. melanogaster. We found that despite differences in Fru+ and Dsx+ cell numbers in wild-type species, cross-species transgenes rescued D. melanogaster courtship behavior and no species-specific behaviors were conferred. Therefore, fru and dsx are not a significant source of evolutionary variation in courtship behavior.

    View Publication Page
    01/16/15 | Low affinity binding site clusters confer Hox specificity and regulatory robustness.
    Crocker J, Abe N, Rinaldi L, McGregor AP, Frankel N, Wang S, Alsawadi A, Valenti P, Plaza S, Payre F, Mann RS, Stern DL
    Cell. 2015 Jan 15;160:191-203. doi: 10.1016/j.cell.2014.11.041

    In animals, Hox transcription factors define regional identity in distinct anatomical domains. How Hox genes encode this specificity is a paradox, because different Hox proteins bind with high affinity in vitro to similar DNA sequences. Here, we demonstrate that the Hox protein Ultrabithorax (Ubx) in complex with its cofactor Extradenticle (Exd) bound specifically to clusters of very low affinity sites in enhancers of the shavenbaby gene of Drosophila. These low affinity sites conferred specificity for Ubx binding in vivo, but multiple clustered sites were required for robust expression when embryos developed in variable environments. Although most individual Ubx binding sites are not evolutionarily conserved, the overall enhancer architecture-clusters of low affinity binding sites-is maintained and required for enhancer function. Natural selection therefore works at the level of the enhancer, requiring a particular density of low affinity Ubx sites to confer both specific and robust expression.

    View Publication Page