Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block

Type of Publication

general_search_page-panel_pane_1 | views_panes

17 Publications

Showing 1-10 of 17 results
Your Criteria:
    10/24/12 | Advanced Programming with ImgLib2
    Pietzsch T, Preibisch S, Tomancak P, Saalfeld S
    Proceedings of the ImageJ User and Developer Conference. 2012 Oct 24:
    Cardona LabSaalfeld Lab
    01/01/10 | An integrated micro- and macroarchitectural analysis of the Drosophila brain by computer-assisted serial section electron microscopy.
    Cardona A, Saalfeld S, Preibisch S, Schmid B, Cheng A, Pulokas J, Tomancak P, Hartenstein V
    PLoS Biology. 2010;8(10):. doi: 10.1371/journal.pbio.1000502

    The analysis of microcircuitry (the connectivity at the level of individual neuronal processes and synapses), which is indispensable for our understanding of brain function, is based on serial transmission electron microscopy (TEM) or one of its modern variants. Due to technical limitations, most previous studies that used serial TEM recorded relatively small stacks of individual neurons. As a result, our knowledge of microcircuitry in any nervous system is very limited. We applied the software package TrakEM2 to reconstruct neuronal microcircuitry from TEM sections of a small brain, the early larval brain of Drosophila melanogaster. TrakEM2 enables us to embed the analysis of the TEM image volumes at the microcircuit level into a light microscopically derived neuro-anatomical framework, by registering confocal stacks containing sparsely labeled neural structures with the TEM image volume. We imaged two sets of serial TEM sections of the Drosophila first instar larval brain neuropile and one ventral nerve cord segment, and here report our first results pertaining to Drosophila brain microcircuitry. Terminal neurites fall into a small number of generic classes termed globular, varicose, axiform, and dendritiform. Globular and varicose neurites have large diameter segments that carry almost exclusively presynaptic sites. Dendritiform neurites are thin, highly branched processes that are almost exclusively postsynaptic. Due to the high branching density of dendritiform fibers and the fact that synapses are polyadic, neurites are highly interconnected even within small neuropile volumes. We describe the network motifs most frequently encountered in the Drosophila neuropile. Our study introduces an approach towards a comprehensive anatomical reconstruction of neuronal microcircuitry and delivers microcircuitry comparisons between vertebrate and insect neuropile.

    View Publication Page
    Cardona LabSaalfeld Lab
    06/15/10 | As-rigid-as-possible mosaicking and serial section registration of large ssTEM datasets.
    Saalfeld S, Cardona A, Hartenstein V, Tomancak P
    Bioinformatics. 2010 Jun 15;26(12):i57-63. doi: 10.1093/bioinformatics/btq219

    Tiled serial section Transmission Electron Microscopy (ssTEM) is increasingly used to describe high-resolution anatomy of large biological specimens. In particular in neurobiology, TEM is indispensable for analysis of synaptic connectivity in the brain. Registration of ssTEM image mosaics has to recover the 3D continuity and geometrical properties of the specimen in presence of various distortions that are applied to the tissue during sectioning, staining and imaging. These include staining artifacts, mechanical deformation, missing sections and the fact that structures may appear dissimilar in consecutive sections.

    View Publication Page
    11/07/08 | Automatic landmark correspondence detection for ImageJ.
    Saalfeld S, Tomancak P
    Proceedings of the ImageJ User and Developer Conference. 2008 Nov 7:

    Landmark correspondences can be used for various tasks in image processing such as image alignment, reconstruction of panoramic photographs, object recognition and simultaneous localization and mapping for mobile robots. The computer vision community knows several techniques for extracting and pairwise associating such landmarks using distinctive invariant local image features. Two very successful methods are the Scale Invariant Feature Transform (SIFT)1 and Multi-Scale Oriented Patches (MOPS).2
    We implemented these methods in the Java programming language3 for seamless use in ImageJ.4 We use it for fully automatic registration of gigantic serial section Transmission Electron Microscopy (TEM) mosaics. Using automatically detected landmark correspondences, the registration of large image mosaics simplifies to globally minimizing the displacement of corresponding points.
    We present here an introduction to automatic landmark correspondence detection and demonstrate our implementation for ImageJ. We demonstrate the application of the plug-in on diverse image data.

    View Publication Page
    03/27/09 | Bead-based mosaicing of single plane illumination microscopy images using geometric local descriptor matching.
    Preibisch S, Saalfeld S, Rohlfing T, Tomancak P
    Medical Imaging 2009: Image Processing. 2009 Mar 27;7259:72592S. doi: 10.1117/12.812612

    Single Plane Illumination Microscopy (SPIM) is an emerging microscopic technique that enables live imaging of large biological specimens in their entirety. By imaging the biological sample from multiple angles, SPIM has the potential to achieve isotropic resolution throughout relatively large biological specimens. For every angle, however, only a shallow section of the specimen is imaged with high resolution, whereas deeper regions appear increasingly blurred. Existing intensity-based registration techniques still struggle to robustly and accurately align images that are characterized by limited overlap and/or heavy blurring. To be able to register such images, we add sub-resolution fluorescent beads to the rigid agarose medium in which the imaged specimen is embedded. For each segmented bead, we store the relative location of its n nearest neighbors in image space as rotation-invariant geometric local descriptors. Corresponding beads between overlapping images are identified by matching these descriptors. The bead correspondences are used to simultaneously estimate the globally optimal transformation for each individual image. The final output image is created by combining all images in an angle-independent output space, using volume injection and local content-based weighting of contributing images. We demonstrate the performance of our approach on data acquired from living embryos of Drosophila and fixed adult C.elegans worms. Bead-based registration outperformed intensity-based registration in terms of computation speed by two orders of magnitude while producing bead registration errors below 1 μm (about 1 pixel). It, therefore, provides an ideal tool for processing of long term time-lapse recordings of embryonic development consisting of hundreds of time points.

    View Publication Page
    Cardona LabSaalfeld Lab
    08/01/09 | CATMAID: collaborative annotation toolkit for massive amounts of image data.
    Saalfeld S, Cardona A, Hartenstein V, Tomancak P
    Bioinformatics. 2009 Aug 1;25(15):1984-6. doi: 10.1093/bioinformatics/btp266

    SUMMARY: High-resolution, three-dimensional (3D) imaging of large biological specimens generates massive image datasets that are difficult to navigate, annotate and share effectively. Inspired by online mapping applications like GoogleMaps, we developed a decentralized web interface that allows seamless navigation of arbitrarily large image stacks. Our interface provides means for online, collaborative annotation of the biological image data and seamless sharing of regions of interest by bookmarking. The CATMAID interface enables synchronized navigation through multiple registered datasets even at vastly different scales such as in comparisons between optical and electron microscopy. AVAILABILITY: http://fly.mpi-cbg.de/catmaid.

    View Publication Page
    Cardona LabSaalfeld Lab
    01/01/09 | Drosophila brain development: closing the gap between a macroarchitectural and microarchitectural approach.
    Cardona A, Saalfeld S, Tomancak P, Hartenstein V
    Cold Spring Harbor Symposia on Quantitative Biology. 2009;74:235-48. doi: 10.1101/sqb.2009.74.037

    Neurobiologists address neural structure, development, and function at the level of "macrocircuits" (how different brain compartments are interconnected; what overall pattern of activity they produce) and at the level of "microcircuits" (how connectivity and physiology of individual neurons and their processes within a compartment determine the functional output of this compartment). Work in our lab aims at reconstructing the developing Drosophila brain at both levels. Macrocircuits can be approached conveniently by reconstructing the pattern of brain lineages, which form groups of neurons whose projections form cohesive fascicles interconnecting the compartments of the larval and adult brain. The reconstruction of microcircuits requires serial section electron microscopy, due to the small size of terminal neuronal processes and their synaptic contacts. Because of the amount of labor that traditionally comes with this approach, very little is known about microcircuitry in brains across the animal kingdom. Many of the problems of serial electron microscopy reconstruction are now solvable with digital image recording and specialized software for both image acquisition and postprocessing. In this chapter, we introduce our efforts to reconstruct the small Drosophila larval brain and discuss our results in light of the published data on neuropile ultrastructure in other animal taxa.

    View Publication Page
    11/07/08 | Fast stitching of large 3d biological datasets.
    Preibisch S, Saalfeld S, Tomancak P
    Proceedings of the ImageJ User and Developer Conference. 2008 Nov 7:

    In order to study anatomy of organisms with high-resolution there is an increasing demand to image large specimen in three dimensions (3D). Confocal microscopy is able to produce high-resolution 3D images, but these are limited by its relatively small field of view compared to the size of large biological specimens. To overcome this drawback, motorized stages moving the sample are used to create a tiled scan of the whole specimen. The physical coordinates provided by the microscope stage are not precise enough to allow reconstruction (”Stitching”) of the whole image from individual image stacks.
    We developed an algorithm, as well as an ImageJ plug-in, based on the Fourier Shift Theorem that computes all possible translations (x, y, z) between two 3D images at once, yielding the best overlap in terms of the cross correlation measure. Apart from the obvious gain in computation time it has the advantage that it cannot be trapped in local minima as it simply computes all possible solutions. Computing the overlap between two adjacent image stacks is fast (12 seconds for two 512x512x89 images on a Intel ® Core2Duo with 2.2GHz) making it suitable for real time use, i.e. computing the output image during acquisition of the individual image stacks.
    To compensate the possible shading- and brightness differences we apply a smooth linear intensity transition between the overlapping stacks. Additionally we extended the to generic 3D registration using gradient based rotation detection on top of the phase correlation method. We demonstrate the performance of our 3D stitching plug-in on several tiled confocal images and show an example of its application for 3D registration.

    View Publication Page
    Cardona LabSaalfeld Lab
    07/01/12 | Fiji: an open-source platform for biological-image analysis.
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A
    Nature Methods. 2012 Jul;9(7):676-82. doi: 10.1038/nmeth.2019

    Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.

    View Publication Page
    06/01/09 | Globally optimal stitching of tiled 3D microscopic image acquisitions.
    Preibisch S, Saalfeld S, Tomancak P
    Bioinformatics. 2009 Jun 1;25(11):1463-5. doi: 10.1093/bioinformatics/btp184

    MOTIVATION: Modern anatomical and developmental studies often require high-resolution imaging of large specimens in three dimensions (3D). Confocal microscopy produces high-resolution 3D images, but is limited by a relatively small field of view compared with the size of large biological specimens. Therefore, motorized stages that move the sample are used to create a tiled scan of the whole specimen. The physical coordinates provided by the microscope stage are not precise enough to allow direct reconstruction (Stitching) of the whole image from individual image stacks.

    RESULTS: To optimally stitch a large collection of 3D confocal images, we developed a method that, based on the Fourier Shift Theorem, computes all possible translations between pairs of 3D images, yielding the best overlap in terms of the cross-correlation measure and subsequently finds the globally optimal configuration of the whole group of 3D images. This method avoids the propagation of errors by consecutive registration steps. Additionally, to compensate the brightness differences between tiles, we apply a smooth, non-linear intensity transition between the overlapping images. Our stitching approach is fast, works on 2D and 3D images, and for small image sets does not require prior knowledge about the tile configuration.

    AVAILABILITY: The implementation of this method is available as an ImageJ plugin distributed as a part of the Fiji project (Fiji is just ImageJ: http://pacific.mpi-cbg.de/).

    View Publication Page