Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
general_search_page-panel_pane_1 | views_panes

46 Publications

Showing 21-30 of 46 results
Your Criteria:
    11/06/20 | In vivo optogenetics with stimulus calibration.
    Coddington LT, Dudman JT
    Methods in Molecular Biology. 2020 Nov 06;2188:273-283. doi: 10.1007/978-1-0716-0818-0_14

    Optogenetic reagents allow for depolarization and hyperpolarization of cells with light. This provides unprecedented spatial and temporal resolution to the control of neuronal activity both in vitro and in vivo. In the intact animal this requires strategies to deliver light deep into the highly scattering tissue of the brain. A general approach that we describe here is to implant optical fibers just above brain regions targeted for light delivery. In part due to the fact that expression of optogenetic proteins is accomplished by techniques with inherent variability (e.g., viral expression levels), it also requires strategies to measure and calibrate the effect of stimulation. Here we describe general procedures that allow one to simultaneously stimulate neurons and use photometry with genetically encoded activity indicators to precisely calibrate stimulation.

    View Publication Page
    12/16/04 | Individual differences in trait anxiety predict the response of the basolateral amygdala to unconsciously processed fearful faces.
    Etkin A, Klemenhagen KC, Dudman JT, Rogan MT, Hen R, Kandel ER, Hirsch J
    Neuron. 2004 Dec 16;44(6):1043-55. doi: 10.3389/fnana.2010.00147

    Responses to threat-related stimuli are influenced by conscious and unconscious processes, but the neural systems underlying these processes and their relationship to anxiety have not been clearly delineated. Using fMRI, we investigated the neural responses associated with the conscious and unconscious (backwardly masked) perception of fearful faces in healthy volunteers who varied in threat sensitivity (Spielberger trait anxiety scale). Unconscious processing modulated activity only in the basolateral subregion of the amygdala, while conscious processing modulated activity only in the dorsal amygdala (containing the central nucleus). Whereas activation of the dorsal amygdala by conscious stimuli was consistent across subjects and independent of trait anxiety, activity in the basolateral amygdala to unconscious stimuli, and subjects’ reaction times, were predicted by individual differences in trait anxiety. These findings provide a biological basis for the unconscious emotional vigilance characteristic of anxiety and a means for investigating the mechanisms and efficacy of treatments for anxiety.

    View Publication Page
    Dudman LabSvoboda Lab
    01/01/11 | Inputs to the dorsal striatum of the mouse reflect the parallel circuit architecture of the forebrain.
    Pan WX, Mao T, Dudman JT
    Frontiers in Neuroanatomy. 2011;4:147. doi: 10.3389/fnana.2010.00147

    The basal ganglia play a critical role in the regulation of voluntary action in vertebrates. Our understanding of the function of the basal ganglia relies heavily upon anatomical information, but continued progress will require an understanding of the specific functional roles played by diverse cell types and their connectivity. An increasing number of mouse lines allow extensive identification, characterization, and manipulation of specified cell types in the basal ganglia. Despite the promise of genetically modified mice for elucidating the functional roles of diverse cell types, there is relatively little anatomical data obtained directly in the mouse. Here we have characterized the retrograde labeling obtained from a series of tracer injections throughout the dorsal striatum of adult mice. We found systematic variations in input along both the medial-lateral and anterior-posterior neuraxes in close agreement with canonical features of basal ganglia anatomy in the rat. In addition to the canonical features we have provided experimental support for the importance of non-canonical inputs to the striatum from the raphe nuclei and the amygdala. To look for organization at a finer scale we have analyzed the correlation structure of labeling intensity across our entire dataset. Using this analysis we found substantial local heterogeneity within the large-scale order. From this analysis we conclude that individual striatal sites receive varied combinations of cortical and thalamic input from multiple functional areas, consistent with some earlier studies in the rat that have suggested the presence of a combinatorial map.

    View Publication Page
    02/13/24 | Integrating across behaviors and timescales to understand the neural control of movement.
    Gmaz JM, Keller JA, Dudman JT, Gallego JA
    Current Opinion in Neurobiology. 2024 Feb 13;85:102843. doi: 10.1016/j.conb.2024.102843

    The nervous system evolved to enable navigation throughout the environment in the pursuit of resources. Evolutionarily newer structures allowed increasingly complex adaptations but necessarily added redundancy. A dominant view of movement neuroscientists is that there is a one-to-one mapping between brain region and function. However, recent experimental data is hard to reconcile with the most conservative interpretation of this framework, suggesting a degree of functional redundancy during the performance of well-learned, constrained behaviors. This apparent redundancy likely stems from the bidirectional interactions between the various cortical and subcortical structures involved in motor control. We posit that these bidirectional connections enable flexible interactions across structures that change depending upon behavioral demands, such as during acquisition, execution or adaptation of a skill. Observing the system across both multiple actions and behavioral timescales can help isolate the functional contributions of individual structures, leading to an integrated understanding of the neural control of movement.

    View Publication Page
    11/24/04 | L-type Ca2+ channel blockers promote Ca2+ accumulation when dopamine receptors are activated in striatal neurons.
    Eaton ME, Macías W, Youngs RM, Rajadhyaksha A, Dudman JT, Konradi C
    Brain Research. Molecular Brain Research. 2004 Nov 24;131(1-2):65-72. doi: 10.3389/fnana.2010.00147

    Dopamine (DA) receptor-mediated signal transduction and gene expression play a central role in many brain disorders from schizophrenia to Parkinson’s disease to addiction. While trying to evaluate the role of L-type Ca2+ channels in dopamine D1 receptor-mediated phosphorylation of the transcription factor cyclic AMP response element-binding protein (CREB), we found that activation of dopamine D1 receptors alters the properties of L-type Ca2+ channel inhibitors and turns them into facilitators of Ca2+ influx. In D1 receptor-stimulated neurons, L-type Ca2+ channel blockers promote cytosolic Ca2+ accumulation. This leads to the activation of a molecular signal transduction pathway and CREB phosphorylation. In the absence of dopamine receptor stimulation, L-type Ca2+ channel blockers inhibit CREB phosphorylation. The effect of dopamine on L-type Ca2+ channel blockers is dependent on protein kinase A (PKA), suggesting that protein phosphorylation plays a role in this phenomenon. Because of the adverse effect of activated dopamine receptors on L-type Ca2+ channel blocker action, the role of L-type Ca2+ channels in the dopamine D1 receptor signal transduction pathway cannot be assessed with pharmacological tools. However, with antisense technology, we demonstrate that L-type Ca2+ channels contribute to D1 receptor-mediated CREB phosphorylation. We conclude that the D1 receptor signal transduction pathway depends on L-type Ca2+ channels to mediate CREB phosphorylation.

    View Publication Page
    10/09/19 | Learning from action: reconsidering movement signaling in midbrain dopamine neuron activity.
    Coddington LT, Dudman JT
    Neuron. 2019 Oct 09;104(1):63-77. doi: 10.1016/j.neuron.2019.08.036

    Animals infer when and where a reward is available from experience with informative sensory stimuli and their own actions. In vertebrates, this is thought to depend upon the release of dopamine from midbrain dopaminergic neurons. Studies of the role of dopamine have focused almost exclusively on their encoding of informative sensory stimuli; however, many dopaminergic neurons are active just prior to movement initiation, even in the absence of sensory stimuli. How should current frameworks for understanding the role of dopamine incorporate these observations? To address this question, we review recent anatomical and functional evidence for action-related dopamine signaling. We conclude by proposing a framework in which dopaminergic neurons encode subjective signals of action initiation to solve an internal credit assignment problem.

    View Publication Page
    03/02/06 | Making the grade with models of persistent activity.
    Dudman JT, Siegelbaum SA
    Neuron. 2006 Mar 2;49(5):649-51. doi: 10.3389/fnana.2010.00147

    Persistent neural activity that outlasts an initial stimulus is thought to provide a mechanism for the transient storage of memory. In this issue of Neuron, Fransén et al. identify important principles for a cell-autonomous mechanism of graded persistent firing using an elegant combination of experimental and computational approaches.

    View Publication Page
    09/28/05 | Mechanism of positive allosteric modulators acting on AMPA receptors.
    Jin R, Clark S, Weeks AM, Dudman JT, Gouaux E, Partin KM
    The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2005 Sep 28;25(39):9027-36. doi: 10.3389/fnana.2010.00147

    Ligand-gated ion channels involved in the modulation of synaptic strength are the AMPA, kainate, and NMDA glutamate receptors. Small molecules that potentiate AMPA receptor currents relieve cognitive deficits caused by neurodegenerative diseases such as Alzheimer’s disease and show promise in the treatment of depression. Previously, there has been limited understanding of the molecular mechanism of action for AMPA receptor potentiators. Here we present cocrystal structures of the glutamate receptor GluR2 S1S2 ligand-binding domain in complex with aniracetam [1-(4-methoxybenzoyl)-2-pyrrolidinone] or CX614 (pyrrolidino-1,3-oxazino benzo-1,4-dioxan-10-one), two AMPA receptor potentiators that preferentially slow AMPA receptor deactivation. Both potentiators bind within the dimer interface of the nondesensitized receptor at a common site located on the twofold axis of molecular symmetry. Importantly, the potentiator binding site is adjacent to the "hinge" in the ligand-binding core "clamshell" that undergoes conformational rearrangement after glutamate binding. Using rapid solution exchange, patch-clamp electrophysiology experiments, we show that point mutations of residues that interact with potentiators in the cocrystal disrupt potentiator function. We suggest that the potentiators slow deactivation by stabilizing the clamshell in its closed-cleft, glutamate-bound conformation.

    View Publication Page
    05/31/22 | Mesolimbic dopamine adapts the rate of learning from action.
    Luke T. Coddington , Sarah E. Lindo , Joshua T. Dudman
    bioRxiv. 2022 May 31:. doi: 10.1101/2021.05.31.446464

    Recent success in training artificial agents and robots derives from a combination of direct learning of behavioral policies and indirect learning via value functions. Policy learning and value learning employ distinct algorithms that optimize behavioral performance and reward prediction, respectively. In animals, behavioral learning and the role of mesolimbic dopamine signaling have been extensively evaluated with respect to reward prediction; however, to date there has been little consideration of how direct policy learning might inform our understanding. Here we used a comprehensive dataset of orofacial and body movements to understand how behavioral policies evolve as naive, head-restrained mice learned a trace conditioning paradigm. Individual differences in initial dopaminergic reward responses correlated with the emergence of learned behavioral policy, but not the emergence of putative value encoding for a predictive cue. Likewise, physiologically-calibrated manipulations of mesolimbic dopamine produced multiple effects inconsistent with value learning but predicted by a neural network-based model that used dopamine signals to set an adaptive rate, not an error signal, for behavioral policy learning. This work provides strong evidence that phasic dopamine activity can regulate direct learning of behavioral policies, expanding the explanatory power of reinforcement learning models for animal learning.

    View Publication Page
    01/18/23 | Mesolimbic dopamine adapts the rate of learning from action.
    Coddington LT, Lindo SE, Dudman JT
    Nature. 2023 Jan 18:. doi: 10.1038/s41586-022-05614-z

    Recent success in training artificial agents and robots derives from a combination of direct learning of behavioural policies and indirect learning through value functions. Policy learning and value learning use distinct algorithms that optimize behavioural performance and reward prediction, respectively. In animals, behavioural learning and the role of mesolimbic dopamine signalling have been extensively evaluated with respect to reward prediction; however, so far there has been little consideration of how direct policy learning might inform our understanding. Here we used a comprehensive dataset of orofacial and body movements to understand how behavioural policies evolved as naive, head-restrained mice learned a trace conditioning paradigm. Individual differences in initial dopaminergic reward responses correlated with the emergence of learned behavioural policy, but not the emergence of putative value encoding for a predictive cue. Likewise, physiologically calibrated manipulations of mesolimbic dopamine produced several effects inconsistent with value learning but predicted by a neural-network-based model that used dopamine signals to set an adaptive rate, not an error signal, for behavioural policy learning. This work provides strong evidence that phasic dopamine activity can regulate direct learning of behavioural policies, expanding the explanatory power of reinforcement learning models for animal learning.

    View Publication Page