Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
general_search_page-panel_pane_1 | views_panes

18 Publications

Showing 11-18 of 18 results
Your Criteria:
    Menon Lab
    11/01/11 | Frozen tissue can provide reproducible proteomic results of subcellular fractionation.
    Lim J, Menon V, Bitzer M, Miller LM, Madrid-Aliste C, Weiss LM, Fiser A, Angeletti RH
    Analytical biochemistry. 2011 Nov 1;418(1):78-84. doi: 10.1016/j.ab.2011.06.045

    Differential detergent fractionation (DDF) is frequently used to partition fresh cells and tissues into distinct compartments. We have tested whether DDF can reproducibly extract and fractionate cellular protein components from frozen tissues. Frozen kidneys were sequentially extracted with three different buffer systems. Analysis of the three fractions with liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified 1693 proteins, some of which were common to all fractions and others of which were unique to specific fractions. Normalized spectral index (SI(N)) values obtained from these data were compared to evaluate both the reproducibility of the method and the efficiency of enrichment. SI(N) values between replicate fractions demonstrated a high correlation, confirming the reproducibility of the method. Correlation coefficients across the three fractions were significantly lower than those for the replicates, supporting the capability of DDF to differentially fractionate proteins into separate compartments. Subcellular annotation of the proteins identified in each fraction demonstrated a significant enrichment of cytoplasmic, cell membrane, and nuclear proteins in the three respective buffer system fractions. We conclude that DDF can be applied to frozen tissue to generate reproducible proteome coverage discriminating subcellular compartments. This demonstrates the feasibility of analyzing cellular compartment-specific proteins in archived tissue samples with the simple DDF method.

    View Publication Page
    Menon Lab
    05/26/15 | Genome engineering of isogenic human ES cells to model autism disorders.
    Martinez RA, Stein JL, Krostag AF, Nelson AM, Marken JS, Menon V, May RC, Yao Z, Kaykas A, Geschwind DH, Grimley JS
    Nucleic acids research. 2015 May 26;43(10):e65. doi: 10.1093/nar/gkv164

    Isogenic pluripotent stem cells are critical tools for studying human neurological diseases by allowing one to study the effects of a mutation in a fixed genetic background. Of particular interest are the spectrum of autism disorders, some of which are monogenic such as Timothy syndrome (TS); others are multigenic such as the microdeletion and microduplication syndromes of the 16p11.2 chromosomal locus. Here, we report engineered human embryonic stem cell (hESC) lines for modeling these two disorders using locus-specific endonucleases to increase the efficiency of homology-directed repair (HDR). We developed a system to: (1) computationally identify unique transcription activator-like effector nuclease (TALEN) binding sites in the genome using a new software program, TALENSeek, (2) assemble the TALEN genes by combining golden gate cloning with modified constructs from the FLASH protocol, and (3) test the TALEN pairs in an amplification-based HDR assay that is more sensitive than the typical non-homologous end joining assay. We applied these methods to identify, construct, and test TALENs that were used with HDR donors in hESCs to generate an isogenic TS cell line in a scarless manner and to model the 16p11.2 copy number disorder without modifying genomic loci with high sequence similarity.

    View Publication Page
    Menon Lab
    04/01/11 | Hallmarks of molecular action of microtubule stabilizing agents: effects of epothilone B, ixabepilone, peloruside A, and laulimalide on microtubule conformation.
    Khrapunovich-Baine M, Menon V, Yang CH, Northcote PT, Miller JH, Angeletti RH, Fiser A, Horwitz SB, Xiao H
    The Journal of biological chemistry. 2011 Apr 1;286(13):11765-78. doi: 10.1074/jbc.M110.162214

    Microtubule stabilizing agents (MSAs) comprise a class of drugs that bind to microtubule (MT) polymers and stabilize them against disassembly. Several of these agents are currently in clinical use as anticancer drugs, whereas others are in various stages of development. Nonetheless, there is insufficient knowledge about the molecular modes of their action. Recent studies from our laboratory utilizing hydrogen-deuterium exchange in combination with mass spectrometry (MS) provide new information on the conformational effects of Taxol and discodermolide on microtubules isolated from chicken erythrocytes (CET). We report here a comprehensive analysis of the effects of epothilone B, ixabepilone (IXEMPRA(TM)), laulimalide, and peloruside A on CET conformation. The results of our comparative hydrogen-deuterium exchange MS studies indicate that all MSAs have significant conformational effects on the C-terminal H12 helix of α-tubulin, which is a likely molecular mechanism for the previously observed modulations of MT interactions with microtubule-associated and motor proteins. More importantly, the major mode of MT stabilization by MSAs is the tightening of the longitudinal interactions between two adjacent αβ-tubulin heterodimers at the interdimer interface. In contrast to previous observations reported with bovine brain tubulin, the lateral interactions between the adjacent protofilaments in CET are particularly strongly stabilized by peloruside A and laulimalide, drugs that bind outside the taxane site. This not only highlights the significance of tubulin isotype composition in modulating drug effects on MT conformation and stability but also provides a potential explanation for the synergy observed when combinations of taxane and alternative site binding drugs are used.

    View Publication Page
    Menon Lab
    02/24/14 | Improving reliability and absolute quantification of human brain microarray data by filtering and scaling probes using RNA-Seq.
    Miller JA, Menon V, Goldy J, Kaykas A, Lee C, Smith KA, Shen EH, Phillips JW, Lein ES, Hawrylycz MJ
    BMC genomics. 2014;15:154. doi: 10.1186/1471-2164-15-154

    BACKGROUND: High-throughput sequencing is gradually replacing microarrays as the preferred method for studying mRNA expression levels, providing nucleotide resolution and accurately measuring absolute expression levels of almost any transcript, known or novel. However, existing microarray data from clinical, pharmaceutical, and academic settings represent valuable and often underappreciated resources, and methods for assessing and improving the quality of these data are lacking.

    RESULTS: To quantitatively assess the quality of microarray probes, we directly compare RNA-Seq to Agilent microarrays by processing 231 unique samples from the Allen Human Brain Atlas using RNA-Seq. Both techniques provide highly consistent, highly reproducible gene expression measurements in adult human brain, with RNA-Seq slightly outperforming microarray results overall. We show that RNA-Seq can be used as ground truth to assess the reliability of most microarray probes, remove probes with off-target effects, and scale probe intensities to match the expression levels identified by RNA-Seq. These sequencing scaled microarray intensities (SSMIs) provide more reliable, quantitative estimates of absolute expression levels for many genes when compared with unscaled intensities. Finally, we validate this result in two human cell lines, showing that linear scaling factors can be applied across experiments using the same microarray platform.

    CONCLUSIONS: Microarrays provide consistent, reproducible gene expression measurements, which are improved using RNA-Seq as ground truth. We expect that our strategy could be used to improve probe quality for many data sets from major existing repositories.

    View Publication Page
    Menon Lab
    06/04/14 | Modeling proteins using a super-secondary structure library and NMR chemical shift information.
    Menon V, Vallat BK, Dybas JM, Fiser A
    Structure (London, England : 1993). 2013 Jun 4;21(6):891-9. doi: 10.1016/j.str.2013.04.012

    A remaining challenge in protein modeling is to predict structures for sequences with no sequence similarity to any experimentally solved structure. Based on earlier observations, the library of protein backbone supersecondary structure motifs (Smotifs) saturated about a decade ago. Therefore, it should be possible to build any structure from a combination of existing Smotifs with the help of limited experimental data that are sufficient to relate the backbone conformations of Smotifs between target proteins and known structures. Here, we present a hybrid modeling algorithm that relies on an exhaustive Smotif library and on nuclear magnetic resonance chemical shift patterns without any input of primary sequence information. In a test of 102 proteins, the algorithm delivered 90 homology-model-quality models, among them 24 high-quality ones, and a topologically correct solution for almost all cases. The current approach opens a venue to address the modeling of larger protein structures for which chemical shifts are available.

    View Publication Page
    Menon Lab
    11/24/11 | Multi-scale correlation structure of gene expression in the brain.
    Hawrylycz M, Ng L, Page D, Morris J, Lau C, Faber S, Faber V, Sunkin S, Menon V, Lein E, Jones A
    Neural networks : the official journal of the International Neural Network Society. 2011 Nov;24(9):933-42. doi: 10.1016/j.neunet.2011.06.012

    The mammalian brain is best understood as a multi-scale hierarchical neural system, in the sense that connection and function occur on multiple scales from micro to macro. Modern genomic-scale expression profiling can provide insight into methodologies that elucidate this architecture. We present a methodology for understanding the relationship of gene expression and neuroanatomy based on correlation between gene expression profiles across tissue samples. A resulting tool, NeuroBlast, can identify networks of genes co-expressed within or across neuroanatomic structures. The method applies to any data modality that can be mapped with sufficient spatial resolution, and provides a computation technique to elucidate neuroanatomy via patterns of gene expression on spatial and temporal scales. In addition, from the perspective of spatial location, we discuss a complementary technique that identifies gene classes that contribute to defining anatomic patterns.

    View Publication Page
    Spruston LabMenon Lab
    07/30/09 | Synapse distribution suggests a two-stage model of dendritic integration in CA1 pyramidal neurons.
    Katz Y, Menon V, Nicholson DA, Geinisman Y, Kath WL, Spruston N
    Neuron. 2009 Jul 30;63(2):171-7. doi: 10.1016/j.neuron.2009.06.023

    Competing models have been proposed to explain how neurons integrate the thousands of inputs distributed throughout their dendritic trees. In a simple global integration model, inputs from all locations sum in the axon. In a two-stage integration model, inputs contribute directly to dendritic spikes, and outputs from multiple branches sum in the axon. These two models yield opposite predictions of how synapses at different dendritic locations should be scaled if they are to contribute equally to neuronal output. We used serial-section electron microscopy to reconstruct individual apical oblique dendritic branches of CA1 pyramidal neurons and observe a synapse distribution consistent with the two-stage integration model. Computational modeling suggests that the observed synapse distribution enhances the contribution of each dendritic branch to neuronal output.

    View Publication Page
    Menon Lab
    10/09/13 | The influence of synaptic weight distribution on neuronal population dynamics.
    Iyer R, Menon V, Buice M, Koch C, Mihalas S
    PLoS computational biology. 2013 Oct;9(10):e1003248. doi: 10.1371/journal.pcbi.1003248

    The manner in which different distributions of synaptic weights onto cortical neurons shape their spiking activity remains open. To characterize a homogeneous neuronal population, we use the master equation for generalized leaky integrate-and-fire neurons with shot-noise synapses. We develop fast semi-analytic numerical methods to solve this equation for either current or conductance synapses, with and without synaptic depression. We show that its solutions match simulations of equivalent neuronal networks better than those of the Fokker-Planck equation and we compute bounds on the network response to non-instantaneous synapses. We apply these methods to study different synaptic weight distributions in feed-forward networks. We characterize the synaptic amplitude distributions using a set of measures, called tail weight numbers, designed to quantify the preponderance of very strong synapses. Even if synaptic amplitude distributions are equated for both the total current and average synaptic weight, distributions with sparse but strong synapses produce higher responses for small inputs, leading to a larger operating range. Furthermore, despite their small number, such synapses enable the network to respond faster and with more stability in the face of external fluctuations.

    View Publication Page