Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

7 Publications

Showing 1-7 of 7 results
Your Criteria:
    03/29/24 | Development of a First-in-Class RIPK1 Degrader to Enhance Antitumor Immunity
    Xin Yu , Dong Lu , Xiaoli Qi , Hanfeng Lin , Bryan L. Holloman , Feng Jin , Longyong Xu , Lang Ding , Weiyi Peng , Meng C. Wang , Xi Chen , Jin Wang
    bioRxiv. 2024 Mar 29:. doi: 10.1101/2024.03.25.586133

    The scaffolding function of receptor interacting protein kinase 1 (RIPK1) confers intrinsic and extrinsic resistance to immune checkpoint blockades (ICBs) and has emerged as a promising target for improving cancer immunotherapies. To address the challenge posed by a poorly defined binding pocket within the intermediate domain, we harnessed proteolysis targeting chimera (PROTAC) technology to develop a first-in-class RIPK1 degrader, LD4172. LD4172 exhibited potent and selective RIPK1 degradation both in vitro and in vivo. Degradation of RIPK1 by LD4172 triggered immunogenic cell death (ICD) and enriched tumor-infiltrating lymphocytes and substantially sensitized the tumors to anti-PD1 therapy. This work reports the first RIPK1 degrader that serves as a chemical probe for investigating the scaffolding functions of RIPK1 and as a potential therapeutic agent to enhance tumor responses to immune checkpoint blockade therapy.

    View Publication Page
    02/21/24 | RAL-1 signaling regulates lipid composition in .
    Wu Y, Lee M, Mutlu AS, Wang M, Reiner DJ
    MicroPubl Biol. 2024 Feb 21;2024:. doi: 10.17912/micropub.biology.001054

    Signaling by the Ral small GTPase is poorly understood . animals with constitutively activated RAL-1 or deficient for the inhibitory RalGAP, HGAP-1 /2, display pale intestines. Staining with Oil Red O detected decreased intestinal lipids in the deletion mutant relative to the wild type. Constitutively activated RAL-1 decreased lipid detected by stimulated Raman scattering (SRS) microscopy, a label-free method of detecting lipid by laser excitation and detection. A signaling-deficient missense mutant for RAL-1 also displayed reduced lipid staining via SRS. We conclude that RAL-1 signaling regulates lipid homeostasis, biosynthesis or storage in live animals.

    View Publication Page
    01/19/24 | Organelle proteomic profiling reveals lysosomal heterogeneity in association with longevity
    Yong Yu , Shihong M. Gao , Youchen Guan , Pei-Wen Hu , Qinghao Zhang , Jiaming Liu , Bentian Jing , Qian Zhao , David M Sabatini , Monther Abu-Remaileh , Sung Yun Jung , Meng C. Wang
    eLife. 2024 Jan 19:. doi: 10.7554/eLife.85214

    Lysosomes are active sites to integrate cellular metabolism and signal transduction. A collection of proteins enriched at lysosomes mediate these metabolic and signaling functions. Both lysosomal metabolism and lysosomal signaling have been linked with longevity regulation; however, how lysosomes adjust their protein composition to accommodate this regulation remains unclear. Using large-scale proteomic profiling, we systemically profiled lysosome- enriched proteomes in association with different longevity mechanisms. We further discovered the lysosomal recruitment of AMPK and nucleoporin proteins and their requirements for longevity in response to increased lysosomal lipolysis. Through comparative proteomic analyses of lysosomes from different tissues and labeled with different markers, we discovered lysosomal heterogeneity across tissues as well as the specific enrichment of the Ragulator complex on Cystinosin positive lysosomes. Together, this work uncovers lysosomal proteome heterogeneity at different levels and provides resources for understanding the contribution of lysosomal proteome dynamics in modulating signal transduction, organelle crosstalk and organism longevity.

    View Publication Page
    01/02/24 | Cutting through stress.
    Jasper LA, Wang MC
    Nature Metabolism. 2024 Jan 02:. doi: 10.1038/s42255-023-00946-0
    12/04/23 | Mitochondrial GTP metabolism controls reproductive aging in C. elegans.
    Lee Y, Savini M, Chen T, Yang J, Zhao Q, Ding L, Gao SM, Senturk M, Sowa JN, Wang JD, Wang MC
    Developmental Cell. 2023 Dec 04;58(23):2718-2731.e7. doi: 10.1016/j.devcel.2023.08.019

    Healthy mitochondria are critical for reproduction. During aging, both reproductive fitness and mitochondrial homeostasis decline. Mitochondrial metabolism and dynamics are key factors in supporting mitochondrial homeostasis. However, how they are coupled to control reproductive health remains unclear. We report that mitochondrial GTP (mtGTP) metabolism acts through mitochondrial dynamics factors to regulate reproductive aging. We discovered that germline-only inactivation of GTP- but not ATP-specific succinyl-CoA synthetase (SCS) promotes reproductive longevity in Caenorhabditis elegans. We further identified an age-associated increase in mitochondrial clustering surrounding oocyte nuclei, which is attenuated by GTP-specific SCS inactivation. Germline-only induction of mitochondrial fission factors sufficiently promotes mitochondrial dispersion and reproductive longevity. Moreover, we discovered that bacterial inputs affect mtGTP levels and dynamics factors to modulate reproductive aging. These results demonstrate the significance of mtGTP metabolism in regulating oocyte mitochondrial homeostasis and reproductive longevity and identify mitochondrial fission induction as an effective strategy to improve reproductive health.

    View Publication Page
    09/26/23 | Quantitative Profiling of Lysosomal pH Heterogeneity using Fluorescence Lifetime Imaging Microscopy
    Dinghuan Deng , Youchen Guan , Baiping Wang , Hui Zheng , Ayse Sena Mutlu , Meng Carla Wang
    bioRxiv. 2023 Sep 26:. doi: 10.1101/2023.09.25.559395

    Lysosomes play crucial roles in maintaining cellular homeostasis and promoting organism fitness. The pH of lysosomes is a crucial parameter for their proper function, and it is dynamically influenced by both intracellular and environmental factors. Here, we present a method based on fluorescence lifetime imaging microscopy (FLIM) for quantitatively analyzing lysosomal pH profiles in diverse types of primary mammalian cells and in different tissues of the live organism Caenorhabditis elegans. This FLIM-based method exhibits high sensitivity in resolving subtle pH differences, thereby revealing the heterogeneity of the lysosomal population within a cell and between cell types. The method enables rapid measurement of lysosomal pH changes in response to various environmental stimuli. Furthermore, the FLIM measurement of pH-sensitive dyes circumvents the need for transgenic reporters and mitigates potential confounding factors associated with varying dye concentrations or excitation light intensity. This FLIM approach offers absolute quantification of lysosomal pH and highlights the significance of lysosomal pH heterogeneity and dynamics, providing a valuable tool for studying lysosomal functions and their regulation in various physiological and pathological contexts.

    View Publication Page
    09/07/23 | Mitochondrial GTP metabolism controls reproductive aging in C. elegans.
    Lee Y, Savini M, Chen T, Yang J, Zhao Q, Ding L, Gao SM, Senturk M, Sowa JN, Wang JD, Wang MC
    Developmental Cell. 2023 Sep 07:. doi: 10.1016/j.devcel.2023.08.019

    Healthy mitochondria are critical for reproduction. During aging, both reproductive fitness and mitochondrial homeostasis decline. Mitochondrial metabolism and dynamics are key factors in supporting mitochondrial homeostasis. However, how they are coupled to control reproductive health remains unclear. We report that mitochondrial GTP (mtGTP) metabolism acts through mitochondrial dynamics factors to regulate reproductive aging. We discovered that germline-only inactivation of GTP- but not ATP-specific succinyl-CoA synthetase (SCS) promotes reproductive longevity in Caenorhabditis elegans. We further identified an age-associated increase in mitochondrial clustering surrounding oocyte nuclei, which is attenuated by GTP-specific SCS inactivation. Germline-only induction of mitochondrial fission factors sufficiently promotes mitochondrial dispersion and reproductive longevity. Moreover, we discovered that bacterial inputs affect mtGTP levels and dynamics factors to modulate reproductive aging. These results demonstrate the significance of mtGTP metabolism in regulating oocyte mitochondrial homeostasis and reproductive longevity and identify mitochondrial fission induction as an effective strategy to improve reproductive health.

    View Publication Page