Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
custom | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3 Publications

Showing 1-3 of 3 results
Your Criteria:
    06/12/22 | Metamorphosis of memory circuits in Drosophila reveal a strategy for evolving a larval brain.
    James W. Truman , Jacquelyn Price , Rosa L. Miyares , Tzumin Lee
    bioRxiv. 2022 Jun 12:. doi: 10.1101/2022.06.09.495452

    Insects like Drosophila produce a second brain adapted to the form and behavior of a larva. Neurons for both larval and adult brains are produced by the same stem cells (neuroblasts) but the larva possesses only the earliest born neurons produced from each. To understand how a functional larval brain is made from this reduced set of neurons, we examined the origins and metamorphic fates of the neurons of the larval and adult mushroom body circuits. The adult mushroom body core is built sequentially of γ Kenyon cells, that form a medial lobe, followed by α’β’, and αβ Kenyon cells that form additional medial lobes and two vertical lobes. Extrinsic input (MBINs) and output (MBONs) neurons divide this core into computational compartments. The larval mushroom body contains only γ neurons. Its medial lobe compartments are roughly homologous to those of the adult and same MBONs are used for both. The larval vertical lobe, however, is an analogous “facsimile” that uses a larval-specific branch on the γ neurons to make up for the missing α’β’, and αβ neurons. The extrinsic cells for the facsimile are early-born neurons that trans-differentiate to serve a mushroom body function in the larva and then shift to other brain circuits in the adult. These findings are discussed in the context of the evolution of a larval brain in insects with complete metamorphosis.

    View Publication Page
    03/26/19 | Neurotransmitter identity is acquired in a lineage-restricted manner in the Drosophila CNS.
    Lacin H, Chen H, Long X, Singer RH, Lee T, Truman JW
    Elife. 2019 Mar 26;8:. doi: 10.7554/eLife.43701

    The vast majority of the adult fly ventral nerve cord is composed of 34 hemilineages, which are clusters of lineally related neurons. Neurons in these hemilineages use one of the three fast-acting neurotransmitters (acetylcholine, GABA, or glutamate) for communication. We generated a comprehensive neurotransmitter usage map for the entire ventral nerve cord. We did not find any cases of neurons using more than one neurotransmitter, but found that the acetylcholine specific gene ChAT is transcribed in many glutamatergic and GABAergic neurons, but these transcripts typically do not leave the nucleus and are not translated. Importantly, our work uncovered a simple rule: All neurons within a hemilineage use the same neurotransmitter. Thus, neurotransmitter identity is acquired at the stem cell level. Our detailed transmitter- usage/lineage identity map will be a great resource for studying the developmental basis of behavior and deciphering how neuronal circuits function to regulate behavior.

    View Publication Page
    09/19/13 | Extremes of lineage plasticity in the Drosophila brain.
    Lin S, Marin EC, Yang C, Kao C, Apenteng BA, Huang Y, O’Connor MB, Truman JW, Lee T
    Current Biology. 2013 Sep 19;23(19):1908-13. doi: 10.1016/j.cub.2013.07.074

    An often-overlooked aspect of neural plasticity is the plasticity of neuronal composition, in which the numbers of neurons of particular classes are altered in response to environment and experience. The Drosophila brain features several well-characterized lineages in which a single neuroblast gives rise to multiple neuronal classes in a stereotyped sequence during development [1]. We find that in the intrinsic mushroom body neuron lineage, the numbers for each class are highly plastic, depending on the timing of temporal fate transitions and the rate of neuroblast proliferation. For example, mushroom body neuroblast cycling can continue under starvation conditions, uncoupled from temporal fate transitions that depend on extrinsic cues reflecting organismal growth and development. In contrast, the proliferation rates of antennal lobe lineages are closely associated with organismal development, and their temporal fate changes appear to be cell cycle-dependent, such that the same numbers and types of uniglomerular projection neurons innervate the antennal lobe following various perturbations. We propose that this surprising difference in plasticity for these brain lineages is adaptive, given their respective roles as parallel processors versus discrete carriers of olfactory information.

    View Publication Page