Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Liu Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4072 Publications

Showing 1221-1230 of 4072 results
06/15/00 | Do cockroaches ’know’ about fluid dynamics?
Rinberg D, Davidowitz H
Nature. 2000 Jun 15;405(6788):756. doi: 10.1038/35015677
11/01/03 | Dopamine D1 receptors mediate CREB phosphorylation via phosphorylation of the NMDA receptor at Ser897-NR1.
Dudman JT, Eaton ME, Rajadhyaksha A, Macías W, Taher M, Barczak A, Kameyama K, Huganir R, Konradi C
Journal of Neurochemistry. 2003 Nov;87(4):922-34. doi: 10.3389/fnana.2010.00147

Addictive drugs such as amphetamine and cocaine stimulate the dopaminergic system, activate dopamine receptors and induce gene expression throughout the striatum. The signal transduction pathway leading from dopamine receptor stimulation at the synapse to gene expression in the nucleus has not been fully elucidated. Here, we present evidence that D1 receptor stimulation leads to phosphorylation of the transcription factor Ca2+ and cyclic AMP response element binding protein (CREB) in the nucleus by means of NMDA receptor-mediated Ca2+ signaling. Stimulation of D1 receptors induces the phosphorylation of Ser897 on the NR1 subunit by protein kinase A (PKA). This phosphorylation event is crucial for D1 receptor-mediated CREB phosphorylation. Dopamine cannot induce CRE-mediated gene expression in neurons transfected with a phosphorylation-deficient NR1 construct. Moreover, stimulation of D1 receptors or increase in cyclic AMP levels leads to an increase in cytosolic Ca2+ in the presence of glutamate, but not in the absence of glutamate, indicating the ability of dopamine and cyclic AMP to facilitate NMDA channel activity. The recruitment of the NMDA receptor signal transduction pathway by D1 receptors may provide a general mechanism for gene regulation that is fundamental for mechanisms of drug addiction and long-term memory.

View Publication Page
09/10/15 | Dopamine is required for the neural representation and control of movement vigor.
Panigrahi B, Martin KA, Li Y, Graves AR, Vollmer A, Olson L, Mensh BD, Karpova AY, Dudman JT
Cell. 2015 Sep 10;162(6):1418-30. doi: 10.1016/j.cell.2015.08.014

Progressive depletion of midbrain dopamine neurons (PDD) is associated with deficits in the initiation, speed, and fluidity of voluntary movement. Models of basal ganglia function focus on initiation deficits; however, it is unclear how they account for deficits in the speed or amplitude of movement (vigor). Using an effort-based operant conditioning task for head-fixed mice, we discovered distinct functional classes of neurons in the dorsal striatum that represent movement vigor. Mice with PDD exhibited a progressive reduction in vigor, along with a selective impairment of its neural representation in striatum. Restoration of dopaminergic tone with a synthetic precursor ameliorated deficits in movement vigor and its neural representation, while suppression of striatal activity during movement was sufficient to reduce vigor. Thus, dopaminergic input to the dorsal striatum is indispensable for the emergence of striatal activity that mediates adaptive changes in movement vigor. These results suggest refined intervention strategies for Parkinson’s disease.

View Publication Page
02/24/00 | Dopamine modulates acute responses to cocaine, nicotine and ethanol in Drosophila.
Bainton RJ, Tsai LT, Singh CM, Moore MS, Neckameyer WS, Heberlein U
Current Biology. 2000 Feb 24;10(4):187-94

Drugs of abuse have a common property in mammals, which is their ability to facilitate the release of the neurotransmitter and neuromodulator dopamine in specific brain regions involved in reward and motivation. This increase in synaptic dopamine levels is believed to act as a positive reinforcer and to mediate some of the acute responses to drugs. The mechanisms by which dopamine regulates acute drug responses and addiction remain unknown.

View Publication Page
09/06/12 | Dopamine neurons modulate pheromone responses in Drosophila courtship learning.
Keleman K, Vrontou E, Krüttner S, Yu JY, Kurtovic-Kozaric A, Dickson BJ
Nature. 2012 Sep 6;489(7414):145-9. doi: 10.1038/nature11345

Learning through trial-and-error interactions allows animals to adapt innate behavioural ‘rules of thumb’ to the local environment, improving their prospects for survival and reproduction. Naive Drosophila melanogaster males, for example, court both virgin and mated females, but learn through experience to selectively suppress futile courtship towards females that have already mated. Here we show that courtship learning reflects an enhanced response to the male pheromone cis-vaccenyl acetate (cVA), which is deposited on females during mating and thus distinguishes mated females from virgins. Dissociation experiments suggest a simple learning rule in which unsuccessful courtship enhances sensitivity to cVA. The learning experience can be mimicked by artificial activation of dopaminergic neurons, and we identify a specific class of dopaminergic neuron that is critical for courtship learning. These neurons provide input to the mushroom body (MB) γ lobe, and the DopR1 dopamine receptor is required in MBγ neurons for both natural and artificial courtship learning. Our work thus reveals critical behavioural, cellular and molecular components of the learning rule by which Drosophila adjusts its innate mating strategy according to experience.

View Publication Page
07/21/16 | Dopaminergic neurons write and update memories with cell-type-specific rules.
Aso Y, Rubin GM
eLife. 2016 Jul 21;5:e16135. doi: 10.7554/eLife.16135

Associative learning is thought to involve parallel and distributed mechanisms of memory formation and storage. In Drosophila, the mushroom body (MB) is the major site of associative odor memory formation. Previously we described the anatomy of the adult MB and defined 20 types of dopaminergic neurons (DANs) that each innervate distinct MB compartments (Aso et al., 2014a; Aso et al., 2014b). Here we compare the properties of memories formed by optogenetic activation of individual DAN cell types. We found extensive differences in training requirements for memory formation, decay dynamics, storage capacity and flexibility to learn new associations. Even a single DAN cell type can either write or reduce an aversive memory, or write an appetitive memory, depending on when it is activated relative to odor delivery. Our results show that different learning rules are executed in seemingly parallel memory systems, providing multiple distinct circuit-based strategies to predict future events from past experiences.

View Publication Page
07/01/12 | Dorsorostral snout muscles in the rat subserve coordinated movement for whisking and sniffing.
Haidarliu S, Golomb D, Kleinfeld D, Ahissar E
Anatomical Record. 2012 Jul;295(7):1181-91. doi: 10.1002/ar.22501

Histochemical examination of the dorsorostral quadrant of the rat snout revealed superficial and deep muscles that are involved in whisking, sniffing, and airflow control. The part of M. nasolabialis profundus that acts as an intrinsic (follicular) muscle to facilitate protraction and translation of the vibrissae is described. An intraturbinate and selected rostral-most nasal muscles that can influence major routs of inspiratory airflow and rhinarial touch through their control of nostril configuration, atrioturbinate and rhinarium position, were revealed.

View Publication Page
02/01/98 | Dorsoventral patterning in the Drosophila retina by wingless.
Heberlein U, Borod ER, Chanut FA
Development. 1998 Feb;125(4):567-77

The eye imaginal disc displays dorsal-ventral (D-V) and anterior-posterior polarity prior to the onset of differentiation, which initiates at the intersection of the D-V midline with the posterior margin. As the wave of differentiation progresses anteriorly, additional asymmetry develops as ommatidial clusters rotate coordinately in opposite directions in the dorsal and ventral halves of the disc; this forms a line of mirror-image symmetry, the equator, which coincides with the D-V midline of the disc. How D-V pattern is established and how it relates to ommatidial rotation are unknown. Here we address this question by assaying the expression of various asymmetric markers under conditions that lead to ectopic differentiation, such as removal of patched or wingless function. We find that D-V patterning develops gradually and that wingless plays an important role in setting up this pattern. We show that wingless is necessary and sufficient to induce dorsal expression of the gene mirror prior to the start of differentiation and also to restrict the expression of the WR122 marker to differentiating photoreceptors near the equator. In addition, we find that manipulations in wingless expression shift the D-V axis of the disc as evidenced by changes in the expression domains of asymmetric markers, the position of the site of initiation and the equator, and the pattern of epithelial growth. Thus, Wg appears to coordinately regulate multiple events related to D-V patterning in the developing retina.

View Publication Page
Baker Lab
01/01/12 | Doublesex functions early and late in gustatory sense organ development.
Mellert DJ, Robinett CC, Baker BS
PLoS One. 2012;7:e51489. doi: 10.1371/journal.pone.0051489

Somatic sexual dimorphisms outside of the nervous system in Drosophila melanogaster are largely controlled by the male- and female-specific Doublesex transcription factors (DSX(M) and DSX(F), respectively). The DSX proteins must act at the right times and places in development to regulate the diverse array of genes that sculpt male and female characteristics across a variety of tissues. To explore how cellular and developmental contexts integrate with doublesex (dsx) gene function, we focused on the sexually dimorphic number of gustatory sense organs (GSOs) in the foreleg. We show that DSX(M) and DSX(F) promote and repress GSO formation, respectively, and that their relative contribution to this dimorphism varies along the proximodistal axis of the foreleg. Our results suggest that the DSX proteins impact specification of the gustatory sensory organ precursors (SOPs). DSX(F) then acts later in the foreleg to regulate gustatory receptor neuron axon guidance. These results suggest that the foreleg provides a unique opportunity for examining the context-dependent functions of DSX.

View Publication Page
Truman LabStern LabFly Functional Connectome
06/20/16 | Doublesex regulates the connectivity of a neural circuit controlling Drosophila male courtship song.
Shirangi TR, Wong AM, Truman JW, Stern DL
Developmental Cell. 2016 Jun 20;37(6):533-44. doi: 10.1016/j.devcel.2016.05.012

It is unclear how regulatory genes establish neural circuits that compose sex-specific behaviors. The Drosophila melanogaster male courtship song provides a powerful model to study this problem. Courting males vibrate a wing to sing bouts of pulses and hums, called pulse and sine song, respectively. We report the discovery of male-specific thoracic interneurons—the TN1A neurons—that are required specifically for sine song. The TN1A neurons can drive the activity of a sex-non-specific wing motoneuron, hg1, which is also required for sine song. The male-specific connection between the TN1A neurons and the hg1 motoneuron is regulated by the sexual differentiation gene doublesex. We find that doublesex is required in the TN1A neurons during development to increase the density of the TN1A arbors that interact with dendrites of the hg1motoneuron. Our findings demonstrate how a sexual differentiation gene can build a sex-specific circuit motif by modulating neuronal arborization.

Doublesex-expressing TN1 neurons are necessary and sufficient for the male sine song•A subclass of TN1 neurons, TN1A, contributes to the sine song•TN1A neurons are functionally coupled to a sine song motoneuron, hg1Doublesex regulates the connectivity between the TN1A and hg1 neurons

It is unclear how developmental regulatory genes specify sex-specific behaviors. Shirangi et al. demonstrate that the Drosophila sexual differentiation gene doublesex encodes a sex-specific behavior—male song—by promoting the connectivity between the male-specific TN1A neurons and the sex-non-specific hg1 neurons, which are required for production of the song.

View Publication Page