Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Stern Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

158 Publications

Showing 131-140 of 158 results
05/06/25 | Single-cell type analysis of wing premotor circuits in the ventral nerve cord of Drosophila melanogaster
Erica Ehrhardt , Samuel C Whitehead , Shigehiro Namiki , Ryo Minegishi , Igor Siwanowicz , Kai Feng , Hideo Otsuna , FlyLight Project Team , Geoffrey W Meissner , David Stern , Jim Truman , David Shepherd , Michael H. Dickinson , Kei Ito , Barry J Dickson , Itai Cohen , Gwyneth M Card , Wyatt Korff
eLife. 2025 May 06:. doi: 10.7554/eLife.106548.1

To perform most behaviors, animals must send commands from higher-order processing centers in the brain to premotor circuits that reside in ganglia distinct from the brain, such as the mammalian spinal cord or insect ventral nerve cord. How these circuits are functionally organized to generate the great diversity of animal behavior remains unclear. An important first step in unraveling the organization of premotor circuits is to identify their constituent cell types and create tools to monitor and manipulate these with high specificity to assess their functions. This is possible in the tractable ventral nerve cord of the fly. To generate such a toolkit, we used a combinatorial genetic technique (split-GAL4) to create 195 sparse transgenic driver lines targeting 196 individual cell types in the ventral nerve cord. These included wing and haltere motoneurons, modulatory neurons, and interneurons. Using a combination of behavioral, developmental, and anatomical analyses, we systematically characterized the cell types targeted in our collection. In addition, we identified correspondences between the cells in this collection and a recent connectomic data set of the ventral nerve cord. Taken together, the resources and results presented here form a powerful toolkit for future investigations of neuronal circuits and connectivity of premotor circuits while linking them to behavioral outputs.

View Publication Page
01/10/24 | Song Torrent: A modular, open-source 96-chamber audio and video recording apparatus with optogenetic activation and inactivation capabilities for Drosophila
Steve Sawtelle , Lakshmi Narayan , Yun Ding , Elizabeth Kim , Emily L. Behrman , Joshua L. Lillvis , Takashi Kawase , David L. Stern
bioRxiv. 2024 Jan 10:. doi: 10.1101/2024.01.09.574712

Background

  • Many Drosophila species use acoustic communication during courtship and studies of these communication systems have provided insight into neurobiology, behavioral ecology, ethology, and evolution.

  • Recording Drosophila courtship sounds and associated behavior is challenging, especially at high throughput, and previously designed devices are relatively expensive and complex to assemble.

Results

  • We present construction plans for a modular system utilizing mostly off-the-shelf, relatively inexpensive components that provides simultaneous high-resolution audio and video recording of 96 isolated or paired Drosophila individuals.

  • We provide open-source control software to record audio and video.

  • We designed high intensity LED arrays that can be used to perform optogenetic activation and inactivation of labelled neurons.

  • The basic design can be modified to facilitate novel study designs or to record insects larger than Drosophila.

  • Fewer than 96 microphones can be used in the system if the full array is not required or to reduce costs.

Implications

  • Our hardware design and software provide an improved platform for reliable and comparatively inexpensive high-throughput recording of Drosophila courtship acoustic and visual behavior and perhaps for recording acoustic signals of other small animals.

View Publication Page
02/02/16 | Tagmentation-based mapping (tagmap) of mobile DNA genomic insertion sites.
bioRxiv. 2016 Feb 2:. doi: 10.1101/037762

Multiple methods have been introduced over the past 30 years to identify the genomic insertion sites of transposable elements and other DNA elements that integrate into genomes. However, each of these methods suffer from limitations that can frustrate attempts to map multiple insertions in a single genome and to map insertions in genomes of high complexity that contain extensive repetitive DNA. I introduce a new method for transposon mapping that is simple to perform, can accurately map multiple insertions per genome, and generates long sequence reads that facilitate mapping to complex genomes. The method, called TagMap, for Tagmentation-based Mapping, relies on a modified Tn5 tagmentation protocol with a single tagmentation adaptor followed by PCR using primers specific to the tranposable element and the adaptor sequence. Several minor modifications to normal tagmentation reagents and protocols allow easy and rapid preparation of TagMap libraries. Short read sequencing starting from the adaptor sequence generates oriented reads that flank and are oriented toward the transposable element insertion site. The convergent orientation of adjacent reads at the insertion site allows straightforward prediction of the precise insertion site(s). A Linux shell script is provided to identify insertion sites from fastq files.

View Publication Page
06/30/13 | TALE-mediated modulation of transcriptional enhancers in vivo.
Crocker J, Stern DL
Nature Methods. 2013 Jun 30;10(8):762-7. doi: 10.1038/nmeth.2543

We tested whether transcription activator-like effectors (TALEs) could mediate repression and activation of endogenous enhancers in the Drosophila genome. TALE repressors (TALERs) targeting each of the five even-skipped (eve) stripe enhancers generated repression specifically of the focal stripes. TALE activators (TALEAs) targeting the eve promoter or enhancers caused increased expression primarily in cells normally activated by the promoter or targeted enhancer, respectively. This effect supports the view that repression acts in a dominant fashion on transcriptional activators and that the activity state of an enhancer influences TALE binding or the ability of the VP16 domain to enhance transcription. In these assays, the Hairy repression domain did not exhibit previously described long-range transcriptional repression activity. The phenotypic effects of TALER and TALEA expression in larvae and adults are consistent with the observed modulations of eve expression. TALEs thus provide a novel tool for detection and functional modulation of transcriptional enhancers in their native genomic context.

View Publication Page
09/01/99 | The Berkeley Drosophila genome project gene disruption project: single P-element insertions mutating 25% of vital Drosophila genes.
Spradling AC, Stern D, Beaton A, Rhem EJ, Laverty T, Mozden N, Misra S, Rubin GM
Genetics. 1999 Sep;153(1):135-77. doi: 10.1186/gb-2007-8-7-r145

A fundamental goal of genetics and functional genomics is to identify and mutate every gene in model organisms such as Drosophila melanogaster. The Berkeley Drosophila Genome Project (BDGP) gene disruption project generates single P-element insertion strains that each mutate unique genomic open reading frames. Such strains strongly facilitate further genetic and molecular studies of the disrupted loci, but it has remained unclear if P elements can be used to mutate all Drosophila genes. We now report that the primary collection has grown to contain 1045 strains that disrupt more than 25% of the estimated 3600 Drosophila genes that are essential for adult viability. Of these P insertions, 67% have been verified by genetic tests to cause the associated recessive mutant phenotypes, and the validity of most of the remaining lines is predicted on statistical grounds. Sequences flanking >920 insertions have been determined to exactly position them in the genome and to identify 376 potentially affected transcripts from collections of EST sequences. Strains in the BDGP collection are available from the Bloomington Stock Center and have already assisted the research community in characterizing >250 Drosophila genes. The likely identity of 131 additional genes in the collection is reported here. Our results show that Drosophila genes have a wide range of sensitivity to inactivation by P elements, and provide a rationale for greatly expanding the BDGP primary collection based entirely on insertion site sequencing. We predict that this approach can bring >85% of all Drosophila open reading frames under experimental control.

View Publication Page
02/01/24 | The density of regulatory information is a major determinant of evolutionary constraint on non-coding DNA in Drosophila
Gonzalo Sabarís , Daniela M. Ortíz , Ian Laiker , Ignacio Mayansky , Sujay Naik , Giacomo Cavalli , David L. Stern , Ella Preger-Ben Noon , Nicolás Frankel
Molecular Biology and Evolution. 2024 Feb 01;41(2):msae004. doi: 10.1093/molbev/msae004

The density and distribution of regulatory information in non-coding DNA of eukaryotic genomes is largely unknown. Evolutionary analyses have estimated that ∼60% of nucleotides in intergenic regions of the D. melanogaster genome is functionally relevant. This estimate is difficult to reconcile with the commonly accepted idea that enhancers are compact regulatory elements that generally encompass less than 1 kilobase of DNA. Here, we approached this issue through a functional dissection of the regulatory region of the gene shavenbaby (svb). Most of the ∼90 kilobases of this large regulatory region is highly conserved in the genus Drosophila, though characterized enhancers occupy a small fraction of this region. By analyzing the regulation of svb in different contexts of Drosophila development, we found that the regulatory architecture that drives svb expression in the abdominal pupal epidermis is organized in a dramatically different way than the information that drives svb expression in the embryonic epidermis. While in the embryonic epidermis svb is activated by compact and dispersed enhancers, svb expression in the pupal epidermis is driven by large regions with enhancer activity, which occupy a great portion of the svb cis-regulatory DNA. We observed that other developmental genes also display a dense distribution of putative regulatory elements in their regulatory regions. Furthermore, we found that a large percentage of conserved non-coding DNA of the Drosophila genome is contained within putative regulatory DNA. These results suggest that part of the evolutionary constraint on non-coding DNA of Drosophila is explained by the density of regulatory information.

View Publication Page
03/01/99 | The developmental basis for allometry in insects.
Stern DL, Emlen DJ
Development. 1999 Mar;126(6):1091-101

Within all species of animals, the size of each organ bears a specific relationship to overall body size. These patterns of organ size relative to total body size are called static allometry and have enchanted biologists for centuries, yet the mechanisms generating these patterns have attracted little experimental study. We review recent and older work on holometabolous insect development that sheds light on these mechanisms. In insects, static allometry can be divided into at least two processes: (1) the autonomous specification of organ identity, perhaps including the approximate size of the organ, and (2) the determination of the final size of organs based on total body size. We present three models to explain the second process: (1) all organs autonomously absorb nutrients and grow at organ-specific rates, (2) a centralized system measures a close correlate of total body size and distributes this information to all organs, and (3) autonomous organ growth is combined with feedback between growing organs to modulate final sizes. We provide evidence supporting models 2 and 3 and also suggest that hormones are the messengers of size information. Advances in our understanding of the mechanisms of allometry will come through the integrated study of whole tissues using techniques from development, genetics, endocrinology and population biology.

View Publication Page
01/01/07 | The developmental genetics of microevolution.
Stern DL
Novartis Found Symp. 2007;284:191-200; discussion 200-6

What is the relationship between variation that segregates within natural populations and the differences that distinguish species? Many studies over the past century have demonstrated that most of the genetic variation within natural populations that contributes to quantitative traits causes relatively small phenotypic effects. In contrast, the genetic causes of quantitative differences between species are at least sometimes caused by few loci of relatively large effect. In addition, most of the results from evolutionary developmental biology are often discussed as though changes at just a few important 'molecular toolbox' genes provide the key clues to morphological evolution. On the face of it, these divergent results seem incompatible and call into question the neo-Darwinian view that differences between species emerge from precisely the same kinds of variants that segregate much of the time in natural populations. One prediction from the classical model is that many different genes can evolve to generate similar phenotypes. I discuss our studies that demonstrate that similar phenotypes have evolved in multiple lineages of Drosophila by evolution of the same gene, shavenbaby/ovo. This evidence for parallel evolution suggests that svb occupies a privileged position in the developmental network patterning larval trichomes that makes it a favourable target of evolutionary change.

View Publication Page
03/27/97 | The evolution of sociality in aphids: a clone’s-eye view
David L. Stern , William A. Foster
The evolution of social behavior in insects and arachnids.. 03/1997:150-165. doi: 10.1017/CBO9780511721953.008

A number of aphid species produce individuals, termed soldiers, that defend the colony by attacking predators. Soldiers have either reduced or zero direct reproductive fitness. Their behavior is therefore altruistic in the classical sense: an individual is behaving in a way that incurs reproductive costs on itself and confers reproductive benefits on another. However, comparison with the better–known eusocial insects (Hymenoptera, Isoptera) indicates that there are important differences between clonal and sexual social animals.

Here we take a clone's–eye view and conclude that many facets of aphid sociality are best thought of in terms of resource allocation: for example, the choice between investment in defense and reproduction. This view considerably simplifies some aspects of the problem and highlights the qualitatively different nature of genetic heterogeneity in colonies of aphids and of other social insects. In sexually reproducing social insects, each individual usually has a different genome, which leads to genetic conflicts of interest between individuals. In social aphids, all members of a clone have identical genomes, barring new mutations, and there should be no disagreement among clonemates about investment decisions. Genetic heterogeneity within colonies can arise, but principally through clonal mixing, and this means that investment decisions will vary between different clones rather than among all individuals.

View Publication Page
02/01/96 | The evolution of soldiers in aphids.
Stern DL, Foster WA
Biol Rev Camb Philos Soc. 1996 Feb;71(1):27-79

1. Defensive individuals, termed soldiers, have recently been discovered in aphids, Soldiers are typically early instar larvae, and in many species the soldiers are reproductively sterile and morphologically and behaviourally specialized. 2. Since aphids reproduce parthenogenetically, we might expect soldier production to be more widespread in aphids than it is. We suggest that a more useful way to think about these problems is to attempt to understand how a clone (rather than an individual) should invest in defence and reproduction. 3. Known soldiers are currently restricted to two families of aphids, the Pemphigidae and Hormaphididae, although they are distributed widely among genera within these families. We discuss the use of a phylogenetic perspective to aid comparative studies of soldier production and we demonstrate this approach using current estimates of phylogenetic affinities among aphids. We show that the distribution of soldier production requires a minimum of six to nine evolutionary origins plus at least one loss. 4. At least four main types of soldiers exist and we present and discuss this diversity of soldiers. 5. Most soldier-producing species produce soldiers within plant galls and we discuss the importance of galls for the evolution of soldiers. 6. We summarize the evidence on the interactions between soldiers and predators and between soldier-producing aphids and ants. 7. We present an optimality model for soldier investment strategies to help guide investigations of the ecological factors selecting for soldiers. 8. The proximate mechanisms of soldier production are currently very poorly understood and we suggest several avenues for further research.

View Publication Page