Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

190 Janelia Publications

Showing 31-40 of 190 results
Your Criteria:
    07/29/14 | Automated image-based tracking and its application in ecology.
    Dell AI, Bender JA, Branson K, Couzin ID, de Polavieja GG, Noldus LP, Pérez-Escudero A, Perona P, Straw AD, Wikelski M, Brose U
    Trends in Ecology and Evolution. 2014 Jul;29(7):417-428. doi: 10.1016/j.tree.2014.05.004

    The behavior of individuals determines the strength and outcome of ecological interactions, which drive population, community, and ecosystem organization. Bio-logging, such as telemetry and animal-borne imaging, provides essential individual viewpoints, tracks, and life histories, but requires capture of individuals and is often impractical to scale. Recent developments in automated image-based tracking offers opportunities to remotely quantify and understand individual behavior at scales and resolutions not previously possible, providing an essential supplement to other tracking methodologies in ecology. Automated image-based tracking should continue to advance the field of ecology by enabling better understanding of the linkages between individual and higher-level ecological processes, via high-throughput quantitative analysis of complex ecological patterns and processes across scales, including analysis of environmental drivers.

    View Publication Page
    09/05/14 | Automatic neuron type identification by neurite localization in the Drosophila medulla.
    Plaza SM, Zhao T
    arXiv. 2014 Sep 5:arXiv:1409.1892 [q-bio.NC]

    Mapping the connectivity of neurons in the brain (i.e., connectomics) is a challenging problem due to both the number of connections in even the smallest organisms and the nanometer resolution required to resolve them. Because of this, previous connectomes contain only hundreds of neurons, such as in the C.elegans connectome. Recent technological advances will unlock the mysteries of increasingly large connectomes (or partial connectomes). However, the value of these maps is limited by our ability to reason with this data and understand any underlying motifs. To aid connectome analysis, we introduce algorithms to cluster similarly-shaped neurons, where 3D neuronal shapes are represented as skeletons. In particular, we propose a novel location-sensitive clustering algorithm. We show clustering results on neurons reconstructed from the Drosophila medulla that show high-accuracy.

    View Publication Page
    09/25/14 | Behavioral variability through stochastic choice and its gating by anterior cingulate cortex.
    Tervo DG, Proskurin M, Manakov M, Kabra M, Vollmer A, Branson K, Karpova AY
    Cell. 2014 Sep 25;159(1):21-32. doi: 10.1016/j.cell.2014.08.037

    Behavioral choices that ignore prior experience promote exploration and unpredictability but are seemingly at odds with the brain's tendency to use experience to optimize behavioral choice. Indeed, when faced with virtual competitors, primates resort to strategic counterprediction rather than to stochastic choice. Here, we show that rats also use history- and model-based strategies when faced with similar competitors but can switch to a "stochastic" mode when challenged with a competitor that they cannot defeat by counterprediction. In this mode, outcomes associated with an animal's actions are ignored, and normal engagement of anterior cingulate cortex (ACC) is suppressed. Using circuit perturbations in transgenic rats, we demonstrate that switching between strategic and stochastic behavioral modes is controlled by locus coeruleus input into ACC. Our findings suggest that, under conditions of uncertainty about environmental rules, changes in noradrenergic input alter ACC output and prevent erroneous beliefs from guiding decisions, thus enabling behavioral variation.

    View Publication Page
    06/15/14 | Bioimage informatics in the context of Drosophila research.
    Jug F, Pietzsch T, Preibisch S, Tomancak P
    Methods. 2014 Jun 15;68(1):60-73. doi: 10.1016/j.ymeth.2014.04.004

    Modern biological research relies heavily on microscopic imaging. The advanced genetic toolkit of Drosophila makes it possible to label molecular and cellular components with unprecedented level of specificity necessitating the application of the most sophisticated imaging technologies. Imaging in Drosophila spans all scales from single molecules to the entire populations of adult organisms, from electron microscopy to live imaging of developmental processes. As the imaging approaches become more complex and ambitious, there is an increasing need for quantitative, computer-mediated image processing and analysis to make sense of the imagery. Bioimage Informatics is an emerging research field that covers all aspects of biological image analysis from data handling, through processing, to quantitative measurements, analysis and data presentation. Some of the most advanced, large scale projects, combining cutting edge imaging with complex bioimage informatics pipelines, are realized in the Drosophila research community. In this review, we discuss the current research in biological image analysis specifically relevant to the type of systems level image datasets that are uniquely available for the Drosophila model system. We focus on how state-of-the-art computer vision algorithms are impacting the ability of Drosophila researchers to analyze biological systems in space and time. We pay particular attention to how these algorithmic advances from computer science are made usable to practicing biologists through open source platforms and how biologists can themselves participate in their further development.

    View Publication Page
    12/01/14 | Bone-free: soft mechanics for adaptive locomotion.
    Trimmer BA, Lin H
    Integrative and Comparative Biology. 2014 Dec;54(6):1122-35. doi: 10.1093/icb/icu076

    Muscular hydrostats (such as mollusks), and fluid-filled animals (such as annelids), can exploit their constant-volume tissues to transfer forces and displacements in predictable ways, much as articulated animals use hinges and levers. Although larval insects contain pressurized fluids, they also have internal air tubes that are compressible and, as a result, they have more uncontrolled degrees of freedom. Therefore, the mechanisms by which larval insects control their movements are expected to reveal useful strategies for designing soft biomimetic robots. Using caterpillars as a tractable model system, it is now possible to identify the biomechanical and neural strategies for controlling movements in such highly deformable animals. For example, the tobacco hornworm, Manduca sexta, can stiffen its body by increasing muscular tension (and therefore body pressure) but the internal cavity (hemocoel) is not iso-barometric, nor is pressure used to directly control the movements of its limbs. Instead, fluid and tissues flow within the hemocoel and the body is soft and flexible to conform to the substrate. Even the gut contributes to the biomechanics of locomotion; it is decoupled from the movements of the body wall and slides forward within the body cavity at the start of each step. During crawling the body is kept in tension for part of the stride and compressive forces are exerted on the substrate along the axis of the caterpillar, thereby using the environment as a skeleton. The timing of muscular activity suggests that crawling is coordinated by proleg-retractor motoneurons and that the large segmental muscles produce anterograde waves of lifting that do not require precise timing. This strategy produces a robust form of locomotion in which the kinematics changes little with orientation. In different species of caterpillar, the presence of prolegs on particular body segments is related to alternative kinematics such as "inching." This suggests a mechanism for the evolution of different gaits through changes in the usage of prolegs, rather than, through extensive alterations in the motor program controlling the body wall. Some of these findings are being used to design and test novel control-strategies for highly deformable robots. These "softworm" devices are providing new insights into the challenges faced by any soft animal navigating in a terrestrial environment.

    View Publication Page
    03/20/14 | Bright building blocks for chemical biology.
    Lavis LD, Raines RT
    ACS Chemical Biology. 2014 Mar 20;9(4):855-66. doi: 10.1021/cb500078u

    Small-molecule fluorophores manifest the ability of chemistry to solve problems in biology. As we noted in a previous review (Lavis, L. D.; Raines, R. T. ACS Chem. Biol. 2008, 3, 142-155), the extant collection of fluorescent probes is built on a modest set of "core" scaffolds that evolved during a century of academic and industrial research. Here, we survey traditional and modern synthetic routes to small-molecule fluorophores and highlight recent biological insights attained with customized fluorescent probes. Our intent is to inspire the design and creation of new high-precision tools that empower chemical biologists.

    View Publication Page
    04/08/14 | Cell-type-based model explaining coexpression patterns of genes in the brain.
    Grange P, Bohland JW, Okaty BW, Sugino K, Bokil H, Nelson SB, Ng L, Hawrylycz M, Mitra PP
    Proceedings of the National Academy of Sciences of the United States of America. 2014 Apr 8;111(14):5397-402. doi: 10.1073/pnas.1312098111

    Spatial patterns of gene expression in the vertebrate brain are not independent, as pairs of genes can exhibit complex patterns of coexpression. Two genes may be similarly expressed in one region, but differentially expressed in other regions. These correlations have been studied quantitatively, particularly for the Allen Atlas of the adult mouse brain, but their biological meaning remains obscure. We propose a simple model of the coexpression patterns in terms of spatial distributions of underlying cell types and establish its plausibility using independently measured cell-type-specific transcriptomes. The model allows us to predict the spatial distribution of cell types in the mouse brain.

    View Publication Page
    01/22/14 | Cell-type-specific labeling of synapses in vivo through synaptic tagging with recombination.
    Chen Y, Akin O, Nern A, Tsui CY, Pecot MY, Zipursky SL
    Neuron. 2014 Jan 22;81(2):280-93. doi: 10.1016/j.neuron.2013.12.021

    The study of synaptic specificity and plasticity in the CNS is limited by the inability to efficiently visualize synapses in identified neurons using light microscopy. Here, we describe synaptic tagging with recombination (STaR), a method for labeling endogenous presynaptic and postsynaptic proteins in a cell-type-specific fashion. We modified genomic loci encoding synaptic proteins within bacterial artificial chromosomes such that these proteins, expressed at endogenous levels and with normal spatiotemporal patterns, were labeled in an inducible fashion in specific neurons through targeted expression of site-specific recombinases. Within the Drosophila visual system, the number and distribution of synapses correlate with electron microscopy studies. Using two different recombination systems, presynaptic and postsynaptic specializations of synaptic pairs can be colabeled. STaR also allows synapses within the CNS to be studied in live animals noninvasively. In principle, STaR can be adapted to the mammalian nervous system.

    View Publication Page
    11/05/14 | Cell-type-specific repression by methyl-CpG-binding protein 2 is biased toward long genes.
    Sugino K, Hempel CM, Okaty BW, Arnson HA, Kato S, Dani VS, Nelson SB
    Journal of Neuroscience. 2014 Sep 17;34(38):12877-83. doi: 10.1523/JNEUROSCI.2674-14.2014

    Mutations in methyl-CpG-binding protein 2 (MeCP2) cause Rett syndrome and related autism spectrum disorders (Amir et al., 1999). MeCP2 is believed to be required for proper regulation of brain gene expression, but prior microarray studies in Mecp2 knock-out mice using brain tissue homogenates have revealed only subtle changes in gene expression (Tudor et al., 2002; Nuber et al., 2005; Jordan et al., 2007; Chahrour et al., 2008). Here, by profiling discrete subtypes of neurons we uncovered more dramatic effects of MeCP2 on gene expression, overcoming the "dilution problem" associated with assaying homogenates of complex tissues. The results reveal misregulation of genes involved in neuronal connectivity and communication. Importantly, genes upregulated following loss of MeCP2 are biased toward longer genes but this is not true for downregulated genes, suggesting MeCP2 may selectively repress long genes. Because genes involved in neuronal connectivity and communication, such as cell adhesion and cell-cell signaling genes, are enriched among longer genes, their misregulation following loss of MeCP2 suggests a possible etiology for altered circuit function in Rett syndrome.

    View Publication Page
    02/03/14 | Cellular and behavioral functions of fruitless isoforms in Drosophila courtship.
    von Philipsborn AC, Jörchel S, Tirian L, Demir E, Morita T, Stern DL, Dickson BJ
    Current Biology . 2014 Feb 3;24:242-51. doi: 10.1016/j.cub.2013.12.015

    BACKGROUND: Male-specific products of the fruitless (fru) gene control the development and function of neuronal circuits that underlie male-specific behaviors in Drosophila, including courtship. Alternative splicing generates at least three distinct Fru isoforms, each containing a different zinc-finger domain. Here, we examine the expression and function of each of these isoforms. RESULTS: We show that most fru(+) cells express all three isoforms, yet each isoform has a distinct function in the elaboration of sexually dimorphic circuitry and behavior. The strongest impairment in courtship behavior is observed in fru(C) mutants, which fail to copulate, lack sine song, and do not generate courtship song in the absence of visual stimuli. Cellular dimorphisms in the fru circuit are dependent on Fru(C) rather than other single Fru isoforms. Removal of Fru(C) from the neuronal classes vAB3 or aSP4 leads to cell-autonomous feminization of arborizations and loss of courtship in the dark. CONCLUSIONS: These data map specific aspects of courtship behavior to the level of single fru isoforms and fru(+) cell types-an important step toward elucidating the chain of causality from gene to circuit to behavior.

    View Publication Page