Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

190 Janelia Publications

Showing 61-70 of 190 results
Your Criteria:
    Gonen Lab
    08/01/14 | Editorial overview: Membranes: recent methods in the study of membrane protein structure.
    Gonen T, Waksman G
    Current Opinion in Structural Biology. 2014 Aug;27:iv-v. doi: 10.1016/j.sbi.2014.09.002
    Singer Lab
    04/20/14 | Efficient Bayesian-based multiview deconvolution.
    Preibisch S, Amat F, Stamataki E, Sarov M, Singer RH, Myers E, Tomancak P
    Nature Methods. 2014 Apr 20;11:645-8. doi: 10.1038/nmeth.2929

    Light-sheet fluorescence microscopy is able to image large specimens with high resolution by capturing the samples from multiple angles. Multiview deconvolution can substantially improve the resolution and contrast of the images, but its application has been limited owing to the large size of the data sets. Here we present a Bayesian-based derivation of multiview deconvolution that drastically improves the convergence time, and we provide a fast implementation using graphics hardware.

    View Publication Page
    12/12/14 | Evolved differences in larval social behavior mediated by novel pheromones.
    Mast JD, De Moraes CM, Alborn HT, Lavis LD, Stern DL
    eLife. 2014 Dec 12;3:. doi: 10.7554/eLife.04205

    Pheromones, chemical signals that convey social information, mediate many insect social behaviors, including navigation and aggregation. Several studies have suggested that behavior during the immature larval stages of Drosophila development is influenced by pheromones, but none of these compounds or the pheromone-receptor neurons that sense them have been identified. Here we report a larval pheromone-signaling pathway. We found that larvae produce two novel long-chain fatty acids that are attractive to other larvae. We identified a single larval chemosensory neuron that detects these molecules. Two members of the pickpocket family of DEG/ENaC channel subunits (ppk23 and ppk29) are required to respond to these pheromones. This pheromone system is evolving quickly, since the larval exudates of D. simulans, the sister species of D. melanogaster, are not attractive to other larvae. Our results define a new pheromone signaling system in Drosophila that shares characteristics with pheromone systems in a wide diversity of insects.

    View Publication Page
    Looger Lab
    03/12/14 | Excitatory synaptic inputs to mouse on-off direction-selective retinal ganglion cells lack direction tuning.
    Park SJ, Kim I, Looger LL, Demb JB, Borghuis BG
    The Journal of Neuroscience : the Official Journal of the Society for Neuroscience. 2014 Mar 12;34(11):3976-81. doi: 10.1523/JNEUROSCI.5017-13.2014

    Direction selectivity represents a fundamental visual computation. In mammalian retina, On-Off direction-selective ganglion cells (DSGCs) respond strongly to motion in a preferred direction and weakly to motion in the opposite, null direction. Electrical recordings suggested three direction-selective (DS) synaptic mechanisms: DS GABA release during null-direction motion from starburst amacrine cells (SACs) and DS acetylcholine and glutamate release during preferred direction motion from SACs and bipolar cells. However, evidence for DS acetylcholine and glutamate release has been inconsistent and at least one bipolar cell type that contacts another DSGC (On-type) lacks DS release. Here, whole-cell recordings in mouse retina showed that cholinergic input to On-Off DSGCs lacked DS, whereas the remaining (glutamatergic) input showed apparent DS. Fluorescence measurements with the glutamate biosensor intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) conditionally expressed in On-Off DSGCs showed that glutamate release in both On- and Off-layer dendrites lacked DS, whereas simultaneously recorded excitatory currents showed apparent DS. With GABA-A receptors blocked, both iGluSnFR signals and excitatory currents lacked DS. Our measurements rule out DS release from bipolar cells onto On-Off DSGCs and support a theoretical model suggesting that apparent DS excitation in voltage-clamp recordings results from inadequate voltage control of DSGC dendrites during null-direction inhibition. SAC GABA release is the apparent sole source of DS input onto On-Off DSGCs.

    View Publication Page
    07/20/14 | Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data.
    Amat F, Lemon W, Mossing DP, McDole K, Wan Y, Branson K, Myers EW, Keller PJ
    Nature Methods. 2014 Jul 20;11(9):951-8. doi: 10.1038/nmeth.3036

    The comprehensive reconstruction of cell lineages in complex multicellular organisms is a central goal of developmental biology. We present an open-source computational framework for the segmentation and tracking of cell nuclei with high accuracy and speed. We demonstrate its (i) generality by reconstructing cell lineages in four-dimensional, terabyte-sized image data sets of fruit fly, zebrafish and mouse embryos acquired with three types of fluorescence microscopes, (ii) scalability by analyzing advanced stages of development with up to 20,000 cells per time point at 26,000 cells min(-1) on a single computer workstation and (iii) ease of use by adjusting only two parameters across all data sets and providing visualization and editing tools for efficient data curation. Our approach achieves on average 97.0% linkage accuracy across all species and imaging modalities. Using our system, we performed the first cell lineage reconstruction of early Drosophila melanogaster nervous system development, revealing neuroblast dynamics throughout an entire embryo.

    View Publication Page
    Svoboda Lab
    01/08/14 | Flow of cortical activity underlying a tactile decision in mice.
    Guo ZV, Li N, Huber D, Ophir E, Gutnisky D, Ting JT, Feng G, Svoboda K
    Neuron. 2014 Jan 8;81:179-94. doi: 10.1016/j.neuron.2013.10.020

    Perceptual decisions involve distributed cortical activity. Does information flow sequentially from one cortical area to another, or do networks of interconnected areas contribute at the same time? Here we delineate when and how activity in specific areas drives a whisker-based decision in mice. A short-term memory component temporally separated tactile "sensation" and "action" (licking). Using optogenetic inhibition (spatial resolution, 2 mm; temporal resolution, 100 ms), we surveyed the neocortex for regions driving behavior during specific behavioral epochs. Barrel cortex was critical for sensation. During the short-term memory, unilateral inhibition of anterior lateral motor cortex biased responses to the ipsilateral side. Consistently, barrel cortex showed stimulus-specific activity during sensation, whereas motor cortex showed choice-specific preparatory activity and movement-related activity, consistent with roles in motor planning and movement. These results suggest serial information flow from sensory to motor areas during perceptual decision making.

    View Publication Page
    04/01/14 | Flying Drosophila stabilize their vision-based velocity controller by sensing wind with their antennae.
    Fuller SB, Straw AD, Peek MY, Murray RM, Dickinson MH
    Proceedings of the National Academy of Sciences of the United States of America. 2014 Apr 1;111(13):E1182-91. doi: 10.1073/pnas.1323529111

    Flies and other insects use vision to regulate their groundspeed in flight, enabling them to fly in varying wind conditions. Compared with mechanosensory modalities, however, vision requires a long processing delay ( 100 ms) that might introduce instability if operated at high gain. Flies also sense air motion with their antennae, but how this is used in flight control is unknown. We manipulated the antennal function of fruit flies by ablating their aristae, forcing them to rely on vision alone to regulate groundspeed. Arista-ablated flies in flight exhibited significantly greater groundspeed variability than intact flies. We then subjected them to a series of controlled impulsive wind gusts delivered by an air piston and experimentally manipulated antennae and visual feedback. The results show that an antenna-mediated response alters wing motion to cause flies to accelerate in the same direction as the gust. This response opposes flying into a headwind, but flies regularly fly upwind. To resolve this discrepancy, we obtained a dynamic model of the fly’s velocity regulator by fitting parameters of candidate models to our experimental data. The model suggests that the groundspeed variability of arista-ablated flies is the result of unstable feedback oscillations caused by the delay and high gain of visual feedback. The antenna response drives active damping with a shorter delay ( 20 ms) to stabilize this regulator, in exchange for increasing the effect of rapid wind disturbances. This provides insight into flies’ multimodal sensory feedback architecture and constitutes a previously unknown role for the antennae.

    View Publication Page
    07/11/14 | FlyMAD: rapid thermogenetic control of neuronal activity in freely walking Drosophila.
    Bath DE, Stowers JR, Hörmann D, Poehlmann A, Dickson BJ, Straw AD
    Nature Methods. 2014 Jul 11;11(7):756-62. doi: 10.1038/nmeth.2973

    Rapidly and selectively modulating the activity of defined neurons in unrestrained animals is a powerful approach in investigating the circuit mechanisms that shape behavior. In Drosophila melanogaster, temperature-sensitive silencers and activators are widely used to control the activities of genetically defined neuronal cell types. A limitation of these thermogenetic approaches, however, has been their poor temporal resolution. Here we introduce FlyMAD (the fly mind-altering device), which allows thermogenetic silencing or activation within seconds or even fractions of a second. Using computer vision, FlyMAD targets an infrared laser to freely walking flies. As a proof of principle, we demonstrated the rapid silencing and activation of neurons involved in locomotion, vision and courtship. The spatial resolution of the focused beam enabled preferential targeting of neurons in the brain or ventral nerve cord. Moreover, the high temporal resolution of FlyMAD allowed us to discover distinct timing relationships for two neuronal cell types previously linked to courtship song.

    View Publication Page
    09/03/14 | Focused proofreading: efficiently extracting connectomes from segmented EM images.
    Plaza SM
    arXiv. 2014 Sep 3:arXiv:1409.1199 [q-bio.QM]

    Pixel and superpixel classifiers have become essential tools for EM segmentation algorithms. Training these classifiers remains a major bottleneck primarily due to the requirement of completely annotating the dataset which is tedious, error-prone and costly. In this paper, we propose an interactive learning scheme for the superpixel classifier for EM segmentation. Our algorithm is "active semi-supervised" because it requests the labels of a small number of examples from user and applies label propagation technique to generate these queries. Using only a small set (<20%) of all datapoints, the proposed algorithm consistently generates a classifier almost as accurate as that estimated from a complete groundtruth. We provide segmentation results on multiple datasets to show the strength of these classifiers.

    View Publication Page
    Grigorieff Lab
    03/20/14 | Frealix: Model-based refinement of helical filament structures from electron micrographs.
    Rohou A, Grigorieff N
    Journal of Structural Biology. 2014 Mar 20;186(2):234-44. doi: 10.1016/j.jsb.2014.03.012

    The structures of many helical protein filaments can be derived from electron micrographs of their suspensions in thin films of vitrified aqueous solutions. The most successful and generally-applicable approach treats short segments of these filaments as independent "single particles", yielding near-atomic resolution for rigid and well-ordered filaments. The single-particle approach can also accommodate filament deformations, yielding sub-nanometer resolution for more flexible filaments. However, in the case of thin and flexible filaments, such as some amyloid-β (Aβ) fibrils, the single-particle approach may fail because helical segments can be curved or otherwise distorted and their alignment can be inaccurate due to low contrast in the micrographs. We developed new software called Frealix that allows the use of arbitrarily short filament segments during alignment to approximate even high curvatures. All segments in a filament are aligned simultaneously with constraints that ensure that they connect to each other in space to form a continuous helical structure. In this paper, we describe the algorithm and benchmark it against datasets of Aβ(1-40) fibrils and tobacco mosaic virus (TMV), both analyzed in earlier work. In the case of TMV, our algorithm achieves similar results to single-particle analysis. In the case of Aβ(1-40) fibrils, we match the previously-obtained resolution but we are also able to obtain reliable alignments and \~{}8-Å reconstructions from curved filaments. Our algorithm also offers a detailed characterization of filament deformations in three dimensions and enables a critical evaluation of the worm-like chain model for biological filaments.

    View Publication Page