Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

general_search_page-panel_pane_1 | views_panes

16 Janelia Publications

Showing 11-16 of 16 results
Your Criteria:
    Dudman LabSternson LabSpruston LabSvoboda LabMouseLight
    09/19/19 | Reconstruction of 1,000 projection neurons reveals new cell types and organization of long-range connectivity in the mouse brain.
    Winnubst J, Bas E, Ferreira TA, Wu Z, Economo MN, Edson P, Arthur BJ, Bruns C, Rokicki K, Schauder D, Olbris DJ, Murphy SD, Ackerman DG, Arshadi C, Baldwin P, Blake R, Elsayed A, Hasan M, Ramirez D, Dos Santos B, Weldon M, Zafar A, Dudman JT, Gerfen CR, Hantman AW, Korff W, Sternson SM, Spruston N, Svoboda K, Chandrashekar J
    Cell. 2019 Sep 19;179(1):268-81. doi: 10.1016/j.cell.2019.07.042

    Neuronal cell types are the nodes of neural circuits that determine the flow of information within the brain. Neuronal morphology, especially the shape of the axonal arbor, provides an essential descriptor of cell type and reveals how individual neurons route their output across the brain. Despite the importance of morphology, few projection neurons in the mouse brain have been reconstructed in their entirety. Here we present a robust and efficient platform for imaging and reconstructing complete neuronal morphologies, including axonal arbors that span substantial portions of the brain. We used this platform to reconstruct more than 1,000 projection neurons in the motor cortex, thalamus, subiculum, and hypothalamus. Together, the reconstructed neurons constitute more than 85 meters of axonal length and are available in a searchable online database. Axonal shapes revealed previously unknown subtypes of projection neurons and suggest organizational principles of long-range connectivity.

    View Publication Page
    Svoboda LabMouseLight
    03/12/19 | Single-neuron axonal reconstruction: The search for a wiring diagram of the brain.
    Economo MN, Winnubst J, Bas E, Ferreira TA, Chandrashekar J
    The Journal of Comparative Neurology. 2019 Mar 12:. doi: 10.1002/cne.24674

    Reconstruction of the axonal projection patterns of single neurons has been an important tool for understanding both the diversity of cell types in the brain and the logic of information flow between brain regions. Innovative approaches now enable the complete reconstruction of axonal projection patterns of individual neurons with vastly increased throughput. Here we review how advances in genetic, imaging, and computational techniques have been exploited for axonal reconstruction. We also discuss how new innovations could enable the integration of genetic and physiological information with axonal morphology for producing a census of cell types in the mammalian brain at scale. This article is protected by copyright. All rights reserved.

    View Publication Page
    03/11/24 | Spot Spine, a freely available ImageJ plugin for 3D detection and morphological analysis of dendritic spines
    Gilles J, Mailly P, Ferreira T, Boudier T, Heck N
    F1000Research. 2024 Mar 11;13:. doi: 10.12688/f1000research.146327.1

    Background

    Dendritic spines are tiny protrusions found along the dendrites of neurons, and their number is a measure of the density of synaptic connections. Altered density and morphology is observed in several pathologies, and spine formation as well as morphological changes correlate with learning and memory. The detection of spines in microscopy images and the analysis of their morphology is therefore a prerequisite for many studies. We have developed a new open-source, freely available, plugin for ImageJ/FIJI, called Spot Spine, that allows detection and morphological measurements of spines in three dimensional images.

    Method

    Local maxima are detected in spine heads, and the intensity distribution around the local maximum is computed to perform the segmentation of each spine head. Spine necks are then traced from the spine head to the dendrite. Several parameters can be set to optimize detection and segmentation, and manual correction gives further control over the result of the process.

    Results

    The plugin allows the analysis of images of dendrites obtained with various labeling and imaging methods. Quantitative measurements are retrieved including spine head volume and surface, and neck length.

    Conclusion

    The plugin and instructions for use are available at https://imagej.net/plugins/spot-spine.

    View Publication Page
    Zuker LabMouseLight
    01/15/15 | The neural representation of taste quality at the periphery.
    Barretto RP, Gillis-Smith S, Chandrashekar J, Yarmolinsky DA, Schnitzer MJ, Ryba NJ, Zuker CS
    Nature. 2015 Jan 15;517(7534):373-6. doi: 10.1038/nature13873

    The mammalian taste system is responsible for sensing and responding to the five basic taste qualities: sweet, sour, bitter, salty and umami. Previously, we showed that each taste is detected by dedicated taste receptor cells (TRCs) on the tongue and palate epithelium. To understand how TRCs transmit information to higher neural centres, we examined the tuning properties of large ensembles of neurons in the first neural station of the gustatory system. Here, we generated and characterized a collection of transgenic mice expressing a genetically encoded calcium indicator in central and peripheral neurons, and used a gradient refractive index microendoscope combined with high-resolution two-photon microscopy to image taste responses from ganglion neurons buried deep at the base of the brain. Our results reveal fine selectivity in the taste preference of ganglion neurons; demonstrate a strong match between TRCs in the tongue and the principal neural afferents relaying taste information to the brain; and expose the highly specific transfer of taste information between taste cells and the central nervous system.

    View Publication Page
    09/03/18 | Topographic precision in sensory and motor corticostriatal projections varies across cell type and cortical area.
    Hooks BM, Papale AE, Paletzki RF, Feroze MW, Eastwood BS, Couey JJ, Winnubst J, Chandrashekar J, Gerfen CR
    Nature Communications. 2018 Sep 03;9(1):3549. doi: 10.1038/s41467-018-05780-7

    The striatum shows general topographic organization and regional differences in behavioral functions. How corticostriatal topography differs across cortical areas and cell types to support these distinct functions is unclear. This study contrasted corticostriatal projections from two layer 5 cell types, intratelencephalic (IT-type) and pyramidal tract (PT-type) neurons, using viral vectors expressing fluorescent reporters in Cre-driver mice. Corticostriatal projections from sensory and motor cortex are somatotopic, with a decreasing topographic specificity as injection sites move from sensory to motor and frontal areas. Topographic organization differs between IT-type and PT-type neurons, including injections in the same site, with IT-type neurons having higher topographic stereotypy than PT-type neurons. Furthermore, IT-type projections from interconnected cortical areas have stronger correlations in corticostriatal targeting than PT-type projections do. As predicted by a longstanding model, corticostriatal projections of interconnected cortical areas form parallel circuits in the basal ganglia.

    View Publication Page
    05/06/20 | Whole-brain profiling of cells and circuits in mammals by tissue clearing and light-sheet microscopy.
    Ueda HR, Dodt H, Osten P, Economo MN, Chandrashekar J, Keller PJ
    Neuron. 2020 May 06;106(3):369-387. doi: 10.1016/j.neuron.2020.03.004

    Tissue clearing and light-sheet microscopy have a 100-year-plus history, yet these fields have been combined only recently to facilitate novel experiments and measurements in neuroscience. Since tissue-clearing methods were first combined with modernized light-sheet microscopy a decade ago, the performance of both technologies has rapidly improved, broadening their applications. Here, we review the state of the art of tissue-clearing methods and light-sheet microscopy and discuss applications of these techniques in profiling cells and circuits in mice. We examine outstanding challenges and future opportunities for expanding these techniques to achieve brain-wide profiling of cells and circuits in primates and humans. Such integration will help provide a systems-level understanding of the physiology and pathology of our central nervous system.

    View Publication Page