Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

131 Janelia Publications

Showing 21-30 of 131 results
Your Criteria:
    Svoboda Lab
    07/02/13 | Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss.
    Talantova M, Sanz-Blasco S, Zhang X, Xia P, Akhtar MW, Okamoto S, Dziewczapolski G, Nakamura T, Cao G, Pratt AE, Kang Y, Tu S, Molokanova E, McKercher SR, Hires SA, Sason H, Stouffer DG, Buczynski MW, Solomon JP, Michael S, Powers ET, Kelly JW, Roberts A, Tong G, Fang-Newmeyer T, Parker J, Holland EA, Zhang D, Nakanishi N, Chen HV, Wolosker H, Wang Y, Parsons LH, Ambasudhan R, Masliah E, Heinemann SF, Piña-Crespo JC, Lipton SA
    Proceedings of the National Academy of Sciences of the United States of America. 2013 Jul 2;110(27):E2518-27. doi: 10.1073/pnas.1306832110

    Synaptic loss is the cardinal feature linking neuropathology to cognitive decline in Alzheimer’s disease (AD). However, the mechanism of synaptic damage remains incompletely understood. Here, using FRET-based glutamate sensor imaging, we show that amyloid-β peptide (Aβ) engages α7 nicotinic acetylcholine receptors to induce release of astrocytic glutamate, which in turn activates extrasynaptic NMDA receptors (eNMDARs) on neurons. In hippocampal autapses, this eNMDAR activity is followed by reduction in evoked and miniature excitatory postsynaptic currents (mEPSCs). Decreased mEPSC frequency may reflect early synaptic injury because of concurrent eNMDAR-mediated NO production, tau phosphorylation, and caspase-3 activation, each of which is implicated in spine loss. In hippocampal slices, oligomeric Aβ induces eNMDAR-mediated synaptic depression. In AD-transgenic mice compared with wild type, whole-cell recordings revealed excessive tonic eNMDAR activity accompanied by eNMDAR-sensitive loss of mEPSCs. Importantly, the improved NMDAR antagonist NitroMemantine, which selectively inhibits extrasynaptic over physiological synaptic NMDAR activity, protects synapses from Aβ-induced damage both in vitro and in vivo.

    View Publication Page
    11/13/22 | Brain-wide measurement of protein turnover with high spatial and temporal resolution
    Boaz Mohar , Jonathan B. Grimm , Ronak Patel , Timothy A. Brown , Paul Tillberg , Luke D. Lavis , Nelson Spruston , Karel Svoboda
    bioRxiv. 2022 Nov 13:. doi: 10.1101/2022.11.12.516226

    Cells regulate function by synthesizing and degrading proteins. This turnover ranges from minutes to weeks, as it varies across proteins, cellular compartments, cell types, and tissues. Current methods for tracking protein turnover lack the spatial and temporal resolution needed to investigate these processes, especially in the intact brain, which presents unique challenges. We describe a pulse-chase method (DELTA) for measuring protein turnover with high spatial and temporal resolution throughout the body, including the brain. DELTA relies on rapid covalent capture by HaloTag of fluorophores that were optimized for bioavailability in vivo. The nuclear protein MeCP2 showed brain region- and cell type-specific turnover. The synaptic protein PSD95 was destabilized in specific brain regions by behavioral enrichment. A novel variant of expansion microscopy further facilitated turnover measurements at individual synapses. DELTA enables studies of adaptive and maladaptive plasticity in brain-wide neural circuits.

    View Publication Page
    08/13/19 | Bright and photostable chemigenetic indicators for extended in vivo voltage imaging.
    Abdelfattah AS, Kawashima T, Singh A, Novak O, Liu H, Shuai Y, Huang Y, Campagnola L, Seeman SC, Yu J, Zheng J, Grimm JB, Patel R, Friedrich J, Mensh BD, Paninski L, Macklin JJ, Murphy GJ, Podgorski K, Lin B, Chen T, Turner GC, Liu Z, Koyama M, Svoboda K, Ahrens MB, Lavis LD, Schreiter ER
    Science. 2019 Aug 13;365(6454):699-704. doi: 10.1126/science.aav6416

    Imaging changes in membrane potential using genetically encoded fluorescent voltage indicators (GEVIs) has great potential for monitoring neuronal activity with high spatial and temporal resolution. Brightness and photostability of fluorescent proteins and rhodopsins have limited the utility of existing GEVIs. We engineered a novel GEVI, "Voltron", that utilizes bright and photostable synthetic dyes instead of protein-based fluorophores, extending the combined duration of imaging and number of neurons imaged simultaneously by more than tenfold relative to existing GEVIs. We used Voltron for in vivo voltage imaging in mice, zebrafish, and fruit flies. In mouse cortex, Voltron allowed single-trial recording of spikes and subthreshold voltage signals from dozens of neurons simultaneously, over 15 min of continuous imaging. In larval zebrafish, Voltron enabled the precise correlation of spike timing with behavior.

    View Publication Page
    Svoboda Lab
    05/01/07 | Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections.
    Petreanu L, Huber D, Sobczyk A, Svoboda K
    Nature Neuroscience. 2007 May;10:663-8. doi: 10.1038/nn1891

    The functions of cortical areas depend on their inputs and outputs, but the detailed circuits made by long-range projections are unknown. We show that the light-gated channel channelrhodopsin-2 (ChR2) is delivered to axons in pyramidal neurons in vivo. In brain slices from ChR2-expressing mice, photostimulation of ChR2-positive axons can be transduced reliably into single action potentials. Combining photostimulation with whole-cell recordings of synaptic currents makes it possible to map circuits between presynaptic neurons, defined by ChR2 expression, and postsynaptic neurons, defined by targeted patching. We applied this technique, ChR2-assisted circuit mapping (CRACM), to map long-range callosal projections from layer (L) 2/3 of the somatosensory cortex. L2/3 axons connect with neurons in L5, L2/3 and L6, but not L4, in both ipsilateral and contralateral cortex. In both hemispheres the L2/3-to-L5 projection is stronger than the L2/3-to-L2/3 projection. Our results suggest that laminar specificity may be identical for local and long-range cortical projections.

    View Publication Page
    Ji LabBetzig LabSvoboda Lab
    01/03/12 | Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex.
    Ji N, Sato TR, Betzig E
    Proceedings of the National Academy of Sciences of the United States of America. 2012 Jan 3;109:22-7. doi: 10.1073/pnas.1109202108

    The signal and resolution during in vivo imaging of the mouse brain is limited by sample-induced optical aberrations. We find that, although the optical aberrations can vary across the sample and increase in magnitude with depth, they remain stable for hours. As a result, two-photon adaptive optics can recover diffraction-limited performance to depths of 450 μm and improve imaging quality over fields of view of hundreds of microns. Adaptive optical correction yielded fivefold signal enhancement for small neuronal structures and a threefold increase in axial resolution. The corrections allowed us to detect smaller neuronal structures at greater contrast and also improve the signal-to-noise ratio during functional Ca(2+) imaging in single neurons.

    View Publication Page
    Svoboda Lab
    03/19/08 | Characterization and subcellular targeting of GCaMP-type genetically-encoded calcium indicators.
    Mao T, O’Connor DH, Scheuss V, Nakai J, Svoboda K
    PLoS One. 2008 Mar 19;3(3):e1796. doi: 10.1371/journal.pone.0001796

    Genetically-encoded calcium indicators (GECIs) hold the promise of monitoring [Ca(2+)] in selected populations of neurons and in specific cellular compartments. Relating GECI fluorescence to neuronal activity requires quantitative characterization. We have characterized a promising new genetically-encoded calcium indicator-GCaMP2-in mammalian pyramidal neurons. Fluorescence changes in response to single action potentials (17+/-10% DeltaF/F [mean+/-SD]) could be detected in some, but not all, neurons. Trains of high-frequency action potentials yielded robust responses (302+/-50% for trains of 40 action potentials at 83 Hz). Responses were similar in acute brain slices from in utero electroporated mice, indicating that long-term expression did not interfere with GCaMP2 function. Membrane-targeted versions of GCaMP2 did not yield larger signals than their non-targeted counterparts. We further targeted GCaMP2 to dendritic spines to monitor Ca(2+) accumulations evoked by activation of synaptic NMDA receptors. We observed robust DeltaF/F responses (range: 37%-264%) to single spine uncaging stimuli that were correlated with NMDA receptor currents measured through a somatic patch pipette. One major drawback of GCaMP2 was its low baseline fluorescence. Our results show that GCaMP2 is improved from the previous versions of GCaMP and may be suited to detect bursts of high-frequency action potentials and synaptic currents in vivo.

    View Publication Page
    Svoboda Lab
    08/23/17 | Circuits in the rodent brainstem that control whisking in concert with other orofacial motor actions.
    McElvain LE, Friedman B, Karten HJ, Svoboda K, Wang F, Deschênes M, Kleinfeld D
    Neuroscience. 2017 Aug 23;368:152-70. doi: 10.1016/j.neuroscience.2017.08.034

    The world view of rodents is largely determined by sensation on two length scales. One is within the animal's peri-personal space. Sensorimotor control on this scale involves active movements of the nose, tongue, head, and vibrissa, along with sniffing to determine olfactory clues. The second scale involves the detection of more distant space through vision and audition; these detection processes also impact repositioning of the head, eyes, and ears. Here we focus on orofacial motor actions, primarily vibrissa-based touch but including nose twitching, head bobbing, and licking, that control sensation at short, peri-personal distances. The orofacial nuclei for control of the motor plants, as well as primary and secondary sensory nuclei associated with these motor actions, lie within the hindbrain. The current data support three themes: First, the position of the sensors is determined by the summation of two drive signals, i.e., a fast rhythmic component and an evolving orienting component. Second, the rhythmic component is coordinated across all orofacial motor actions and is phase-locked to sniffing as the animal explores. Reverse engineering reveals that the preBötzinger inspiratory complex provides the reset to the relevant premotor oscillators. Third, direct feedback from somatosensory trigeminal nuclei can rapidly alter motion of the sensors. This feedback is disynaptic and can be tuned by high-level inputs. The elucidation of synergistic coordination of orofacial motor actions to form behaviors, beyond that of a common rhythmic component, represents a work in progress that encompasses feedback through the midbrain and forebrain as well as hindbrain areas.

    View Publication Page
    Svoboda Lab
    04/10/15 | Comprehensive imaging of cortical networks.
    Peron S, Chen T, Svoboda K
    Current Opinion in Neurobiology. 2015 Apr 10;32:115-123. doi: 10.1016/j.conb.2015.03.016

    Neural computations are implemented by activity in spatially distributed neural circuits. Cellular imaging fills a unique niche in linking activity of specific types of neurons to behavior, over spatial scales spanning single neurons to entire brain regions, and temporal scales from milliseconds to months. Imaging may soon make it possible to track activity of all neurons in a brain region, such as a cortical column. We review recent methodological advances that facilitate optical imaging of neuronal populations in vivo, with an emphasis on calcium imaging using protein indicators in mice. We point out areas that are particularly ripe for future developments.

    View Publication Page
    Darshan LabSvoboda Lab
    11/26/23 | Connectivity underlying motor cortex activity during naturalistic goal-directed behavior.
    Arseny Finkelstein , Kayvon Daie , Márton Rózsa , Ran Darshan , Karel Svoboda
    bioRxiv. 2023 Nov 26:. doi: 10.1101/2023.11.25.568673

    Neural representations of information are shaped by local network interactions. Previous studies linking neural coding and cortical connectivity focused on stimulus selectivity in the sensory cortex 14. Here we study neural activity in the motor cortex during naturalistic behavior in which mice gathered rewards with multidirectional tongue reaching. This behavior does not require training and thus allowed us to probe neural coding and connectivity in motor cortex before its activity is shaped by learning a specific task. Neurons typically responded during and after reaching movements and exhibited conjunctive tuning to target location and reward outcome. We used an all-optical 5,4,6,7 method for large-scale causal functional connectivity mapping in vivo. Mapping connectivity between > 20,000,000 excitatory neuronal pairs revealed fine-scale columnar architecture in layer 2/3 of the motor cortex. Neurons displayed local (< 100 µm) like-to-like connectivity according to target-location tuning, and inhibition over longer spatial scales. Connectivity patterns comprised a continuum, with abundant weakly connected neurons and sparse strongly connected neurons that function as network hubs. Hub neurons were weakly tuned to target-location and reward-outcome but strongly influenced neighboring neurons. This network of neurons, encoding location and outcome of movements to different motor goals, may be a general substrate for rapid learning of complex, goal-directed behaviors.

    View Publication Page
    12/03/15 | Cortex commands the performance of skilled movement.
    Guo J, Graves AR, Guo WW, Zheng J, Lee A, Rodríguez-González J, Li N, Macklin JJ, Phillips JW, Mensh BD, Branson K, Hantman AW
    eLife. 2015 Dec 3;4:. doi: 10.7554/eLife.10774

    Mammalian cerebral cortex is accepted as being critical for voluntary motor control, but what functions depend on cortex is still unclear. Here we used rapid, reversible optogenetic inhibition to test the role of cortex during a head-fixed task in which mice reach, grab, and eat a food pellet. Sudden cortical inhibition blocked initiation or froze execution of this skilled prehension behavior, but left untrained forelimb movements unaffected. Unexpectedly, kinematically normal prehension occurred immediately after cortical inhibition even during rest periods lacking cue and pellet. This 'rebound' prehension was only evoked in trained and food-deprived animals, suggesting that a motivation-gated motor engram sufficient to evoke prehension is activated at inhibition's end. These results demonstrate the necessity and sufficiency of cortical activity for enacting a learned skill.

    View Publication Page