Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

175 Janelia Publications

Showing 71-80 of 175 results
Your Criteria:
    04/27/24 | hkb is required for DIP-α expression and target recognition in the Drosophila neuromuscular circuit
    Robert A Carrillo , Yupu Wang , Rio Salazar , Luciano Simonetta , Violet Sorrentino , Terrence J Gatton , Bill Wu , Christopher G Vecsey
    Communications Biology. 2024 Apr 27;7(507):. doi: 10.1038/s42003-024-06184-8

    Our nervous system contains billions of neurons that form precise connections with each other through interactions between cell surface proteins (CSPs). In Drosophila, the Dpr and DIP immunoglobulin protein subfamilies form homophilic or heterophilic interactions to instruct synaptic connectivity, synaptic growth and cell survival. However, the upstream regulation and downstream signaling mechanisms of Dprs and DIPs are not clear. In the Drosophila larval neuromuscular system, DIP-α is expressed in the dorsal and ventral type-Is motor neurons (MNs). We conducted an F1 dominant modifier genetic screen to identify regulators of Dprs and DIPs. We found that the transcription factor, huckebein (hkb), genetically interacts with DIP-α and is important for target recognition specifically in the dorsal Is MN, but not the ventral Is MN. Loss of hkb led to complete removal of DIP-α expression. We then confirmed that this specificity is through the dorsal Is MN specific transcription factor, even-skipped (eve), which acts downstream of hkb. Genetic interaction between hkb and eve revealed that they act in the same pathway to regulate dorsal Is MN connectivity. Our study provides insight into the transcriptional regulation of DIP-α and suggests that distinct regulatory mechanisms exist for the same CSP in different neurons.

    View Publication Page
    08/21/23 | Hydrophobic interactions dominate the recognition of a KRAS G12V neoantigen.
    Wright KM, DiNapoli SR, Miller MS, Aitana Azurmendi P, Zhao X, Yu Z, Chakrabarti M, Shi W, Douglass J, Hwang MS, Hsiue EH, Mog BJ, Pearlman AH, Paul S, Konig MF, Pardoll DM, Bettegowda C, Papadopoulos N, Kinzler KW, Vogelstein B, Zhou S, Gabelli SB
    Nature Communications. 2023 Aug 21;14(1):5063. doi: 10.1038/s41467-023-40821-w

    Specificity remains a major challenge to current therapeutic strategies for cancer. Mutation associated neoantigens (MANAs) are products of genetic alterations, making them highly specific therapeutic targets. MANAs are HLA-presented (pHLA) peptides derived from intracellular mutant proteins that are otherwise inaccessible to antibody-based therapeutics. Here, we describe the cryo-EM structure of an antibody-MANA pHLA complex. Specifically, we determine a TCR mimic (TCRm) antibody bound to its MANA target, the KRAS peptide presented by HLA-A*03:01. Hydrophobic residues appear to account for the specificity of the mutant G12V residue. We also determine the structure of the wild-type G12 peptide bound to HLA-A*03:01, using X-ray crystallography. Based on these structures, we perform screens to validate the key residues required for peptide specificity. These experiments led us to a model for discrimination between the mutant and the wild-type peptides presented on HLA-A*03:01 based exclusively on hydrophobic interactions.

    View Publication Page
    04/04/23 | Identifying determinants of synaptic specificity by integrating connectomes and transcriptomes
    Juyoun Yoo , Mark Dombrovski , Parmis Mirshahidi , Aljoscha Nern , Samuel A. LoCascio , S. Lawrence Zipursky , Yerbol Z. Kurmangaliyev
    bioRxiv. 2023 Apr 04:. doi: 10.1101/2023.04.03.534791

    How do developing neurons select their synaptic partners? To identify molecules matching synaptic partners, we integrated the synapse-level connectome of neural circuits with the developmental expression patterns and binding specificities of cell adhesion molecules (CAMs) on pre- and postsynaptic neurons. We focused on parallel synaptic pathways in the Drosophila visual system, in which closely related neurons form synapses onto closely related target neurons. We show that the choice of synaptic partners correlates with the matching expression of receptor-ligand pairs of Beat and Side proteins of the immunoglobulin superfamily (IgSF) CAMs. Genetic analysis demonstrates that these proteins determine the choice between alternative synaptic targets. Combining transcriptomes, connectomes, and protein interactome maps provides a framework to uncover the molecular logic of synaptic connectivity.

    View Publication Page
    12/05/23 | Imaging neuronal voltage beyond the scattering limit
    Tsai-Wen Chen , Xian-Bin Huang , Sarah E. Plutkis , Katie L. Holland , Luke D. Lavis , Bei-Jung Lin
    bioRxiv. 2023 Dec 05:. doi: 10.1101/2023.12.03.568403

    Voltage imaging is a promising technique for high-speed recording of neuronal population activity. However, tissue scattering severely limits its application in dense neuronal populations. Here, we adopted the principle of localization microscopy, a technique that enables super-resolution imaging of single-molecules, to resolve dense neuronal activities in vivo. Leveraging the sparse activation of neurons during action potentials (APs), we precisely localize the fluorescence change associated with each AP, creating a super-resolution image of neuronal activities. This approach, termed Activity Localization Imaging (ALI), identifies overlapping neurons and separates their activities with over 10-fold greater precision than what tissue scattering permits. Using ALI, we simultaneously recorded over a hundred densely-labeled CA1 neurons, creating a map of hippocampal theta oscillation at single-cell and single-cycle resolution.

    View Publication Page
    10/28/23 | Imagining the future of optical microscopy: everything, everywhere, all at once.
    Balasubramanian H, Hobson CM, Chew T, Aaron JS
    Communications Biology. 2023 Oct 28;6(1):1096. doi: 10.1038/s42003-023-05468-9

    The optical microscope has revolutionized biology since at least the 17 Century. Since then, it has progressed from a largely observational tool to a powerful bioanalytical platform. However, realizing its full potential to study live specimens is hindered by a daunting array of technical challenges. Here, we delve into the current state of live imaging to explore the barriers that must be overcome and the possibilities that lie ahead. We venture to envision a future where we can visualize and study everything, everywhere, all at once - from the intricate inner workings of a single cell to the dynamic interplay across entire organisms, and a world where scientists could access the necessary microscopy technologies anywhere.

    View Publication Page
    03/01/23 | In situ cryo-electron tomography reveals the asymmetric architecture of mammalian sperm axonemes.
    Chen Z, Greenan GA, Shiozaki M, Liu Y, Skinner WM, Zhao X, Zhao S, Yan R, Yu Z, Lishko PV, Agard DA, Vale RD
    Nature Structural & Molecular Biology. 2023 Mar 01;30(3):360-9. doi: 10.1038/s41594-022-00861-0

    The flagella of mammalian sperm display non-planar, asymmetric beating, in contrast to the planar, symmetric beating of flagella from sea urchin sperm and unicellular organisms. The molecular basis of this difference is unclear. Here, we perform in situ cryo-electron tomography of mouse and human sperm, providing the highest-resolution structural information to date. Our subtomogram averages reveal mammalian sperm-specific protein complexes within the microtubules, the radial spokes and nexin-dynein regulatory complexes. The locations and structures of these complexes suggest potential roles in enhancing the mechanical strength of mammalian sperm axonemes and regulating dynein-based axonemal bending. Intriguingly, we find that each of the nine outer microtubule doublets is decorated with a distinct combination of sperm-specific complexes. We propose that this asymmetric distribution of proteins differentially regulates the sliding of each microtubule doublet and may underlie the asymmetric beating of mammalian sperm.

    View Publication Page
    06/20/23 | Input density tunes Kenyon cell sensory responses in the Drosophila mushroom body.
    Ahmed M, Rajagopalan AE, Pan Y, Li Y, Williams DL, Pedersen EA, Thakral M, Previero A, Close KC, Christoforou CP, Cai D, Turner GC, Clowney EJ
    Current Biology. 2023 Jun 20:. doi: 10.1016/j.cub.2023.05.064

    The ability to discriminate sensory stimuli with overlapping features is thought to arise in brain structures called expansion layers, where neurons carrying information about sensory features make combinatorial connections onto a much larger set of cells. For 50 years, expansion coding has been a prime topic of theoretical neuroscience, which seeks to explain how quantitative parameters of the expansion circuit influence sensory sensitivity, discrimination, and generalization. Here, we investigate the developmental events that produce the quantitative parameters of the arthropod expansion layer, called the mushroom body. Using Drosophila melanogaster as a model, we employ genetic and chemical tools to engineer changes to circuit development. These allow us to produce living animals with hypothesis-driven variations on natural expansion layer wiring parameters. We then test the functional and behavioral consequences. By altering the number of expansion layer neurons (Kenyon cells) and their dendritic complexity, we find that input density, but not cell number, tunes neuronal odor selectivity. Simple odor discrimination behavior is maintained when the Kenyon cell number is reduced and augmented by Kenyon cell number expansion. Animals with increased input density to each Kenyon cell show increased overlap in Kenyon cell odor responses and become worse at odor discrimination tasks.

    View Publication Page
    07/10/23 | Input density tunes Kenyon cell sensory responses in the Drosophila mushroom body.
    Ahmed M, Rajagopalan AE, Pan Y, Li Y, Williams DL, Pedersen EA, Thakral M, Previero A, Close KC, Christoforou CP, Cai D, Turner GC, Clowney EJ
    Current Biology. 2023 Jul 10;33(13):2742-2760.e12. doi: 10.1016/j.cub.2023.05.064

    The ability to discriminate sensory stimuli with overlapping features is thought to arise in brain structures called expansion layers, where neurons carrying information about sensory features make combinatorial connections onto a much larger set of cells. For 50 years, expansion coding has been a prime topic of theoretical neuroscience, which seeks to explain how quantitative parameters of the expansion circuit influence sensory sensitivity, discrimination, and generalization. Here, we investigate the developmental events that produce the quantitative parameters of the arthropod expansion layer, called the mushroom body. Using Drosophila melanogaster as a model, we employ genetic and chemical tools to engineer changes to circuit development. These allow us to produce living animals with hypothesis-driven variations on natural expansion layer wiring parameters. We then test the functional and behavioral consequences. By altering the number of expansion layer neurons (Kenyon cells) and their dendritic complexity, we find that input density, but not cell number, tunes neuronal odor selectivity. Simple odor discrimination behavior is maintained when the Kenyon cell number is reduced and augmented by Kenyon cell number expansion. Animals with increased input density to each Kenyon cell show increased overlap in Kenyon cell odor responses and become worse at odor discrimination tasks.

    View Publication Page
    08/02/23 | Investigating the composition and recruitment of the mycobacterial ImuA'-ImuB-DnaE2 mutasome.
    Gessner S, Martin ZA, Reiche MA, Santos JA, Dinkele R, Ramudzuli A, Dhar N, de Wet TJ, Anoosheh S, Lang DM, Aaron J, Chew T, Herrmann J, Müller R, McKinney JD, Woodgate R, Mizrahi V, Venclovas Č, Lamers MH, Warner DF
    eLife. 2023 Aug 02;12:. doi: 10.7554/eLife.75628

    A DNA damage-inducible mutagenic gene cassette has been implicated in the emergence of drug resistance in during anti-tuberculosis (TB) chemotherapy. However, the molecular composition and operation of the encoded 'mycobacterial mutasome' - minimally comprising DnaE2 polymerase and ImuA' and ImuB accessory proteins - remain elusive. Following exposure of mycobacteria to DNA damaging agents, we observe that DnaE2 and ImuB co-localize with the DNA polymerase III β subunit (β clamp) in distinct intracellular foci. Notably, genetic inactivation of the mutasome in an mutant containing a disrupted β clamp-binding motif abolishes ImuB-β clamp focus formation, a phenotype recapitulated pharmacologically by treating bacilli with griselimycin and in biochemical assays in which this β clamp-binding antibiotic collapses pre-formed ImuB-β clamp complexes. These observations establish the essentiality of the ImuB-β clamp interaction for mutagenic DNA repair in mycobacteria, identifying the mutasome as target for adjunctive therapeutics designed to protect anti-TB drugs against emerging resistance.

    View Publication Page
    12/29/23 | Ketamine modulates a norepinephrine-astroglial circuit to persistently suppress futility-induced passivity.
    Marc Duque , Alex B. Chen , Eric Hsu , Sujatha Narayan , Altyn Rymbek , Shahinoor Begum , Gesine Saher , Adam E. Cohen , David E. Olson , David A. Prober , Dwight E. Bergles , Mark C. Fishman , Florian Engert , Misha B. Ahrens
    bioRxiv. 2023 Dec 29:. doi: 10.1101/2022.12.29.522099

    Mood-altering compounds hold promise for the treatment of many psychiatric disorders, such as depression, but connecting their molecular, circuit, and behavioral effects has been challenging. Here we find that, analogous to effects in rodent learned helplessness models, ketamine pre-exposure persistently suppresses futility-induced passivity in larval zebrafish. While antidepressants are thought to primarily act on neurons, brain-wide imaging in behaving zebrafish showed that ketamine elevates intracellular calcium in astroglia for many minutes, followed by persistent calcium downregulation post-washout. Calcium elevation depends on astroglial α1-adrenergic receptors and is required for suppression of passivity. Chemo-/optogenetic perturbations of noradrenergic neurons and astroglia demonstrate that the aftereffects of glial calcium elevation are sufficient to suppress passivity by inhibiting neuronal-astroglial integration of behavioral futility. Imaging in mouse cortex reveals that ketamine elevates astroglial calcium through conserved pathways, suggesting that ketamine exerts its behavioral effects by persistently modulating evolutionarily ancient neuromodulatory systems spanning neurons and astroglia.

    View Publication Page