Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

34 Janelia Publications

Showing 11-20 of 34 results
Your Criteria:
    09/10/20 | Inpainting Networks Learn to Separate Cells in Microscopy Images
    Wolf S, Hamprecht FA, Funke J
    British Machine Vision Conference. 2020 Sep:

    Deep neural networks trained to inpaint partially occluded images show a deep understanding of image composition and have even been shown to remove objects from images convincingly. In this work, we investigate how this implicit knowledge of image composition can be be used to separate cells in densely populated microscopy images. We propose a measure for the independence of two image regions given a fully self-supervised inpainting network and separate objects by maximizing this independence. We evaluate our method on two cell segmentation datasets and show that cells can be separated completely unsupervised. Furthermore, combined with simple foreground detection, our method yields instance segmentation of similar quality to fully supervised methods.

    View Publication Page
    07/01/19 | Large scale image segmentation with structured loss based deep learning for connectome reconstruction.
    Funke J, Tschopp FD, Grisaitis W, Sheridan A, Singh C, Saalfeld S, Turaga SC
    IEEE Transactions on Pattern Analysis and Machine Intelligence. 2019 Jul 1;41(7):1669-80. doi: 10.1109/TPAMI.2018.2835450

    We present a method combining affinity prediction with region agglomeration, which improves significantly upon the state of the art of neuron segmentation from electron microscopy (EM) in accuracy and scalability. Our method consists of a 3D U-net, trained to predict affinities between voxels, followed by iterative region agglomeration. We train using a structured loss based on MALIS, encouraging topologically correct segmentations obtained from affinity thresholding. Our extension consists of two parts: First, we present a quasi-linear method to compute the loss gradient, improving over the original quadratic algorithm. Second, we compute the gradient in two separate passes to avoid spurious gradient contributions in early training stages. Our predictions are accurate enough that simple learning-free percentile-based agglomeration outperforms more involved methods used earlier on inferior predictions. We present results on three diverse EM datasets, achieving relative improvements over previous results of 27%, 15%, and 250%. Our findings suggest that a single method can be applied to both nearly isotropic block-face EM data and anisotropic serial sectioned EM data. The runtime of our method scales linearly with the size of the volume and achieves a throughput of ~2.6 seconds per megavoxel, qualifying our method for the processing of very large datasets.

    View Publication Page
    02/01/23 | Local shape descriptors for neuron segmentation.
    Sheridan A, Nguyen TM, Deb D, Lee WA, Saalfeld S, Turaga SC, Manor U, Funke J
    Nature Methods. 2023 Feb 01;20(2):295-303. doi: 10.1038/s41592-022-01711-z

    We present an auxiliary learning task for the problem of neuron segmentation in electron microscopy volumes. The auxiliary task consists of the prediction of local shape descriptors (LSDs), which we combine with conventional voxel-wise direct neighbor affinities for neuron boundary detection. The shape descriptors capture local statistics about the neuron to be segmented, such as diameter, elongation, and direction. On a study comparing several existing methods across various specimen, imaging techniques, and resolutions, auxiliary learning of LSDs consistently increases segmentation accuracy of affinity-based methods over a range of metrics. Furthermore, the addition of LSDs promotes affinity-based segmentation methods to be on par with the current state of the art for neuron segmentation (flood-filling networks), while being two orders of magnitudes more efficient-a critical requirement for the processing of future petabyte-sized datasets.

    View Publication Page
    09/17/20 | Microtubule Tracking in Electron Microscopy Volumes
    Nils Eckstein , Julia Buhmann , Matthew Cook , Jan Funke
    International Conference on Medical Image Computing and Computer-Assisted Intervention. 2020 Sep 17:

    We present a method for microtubule tracking in electron microscopy volumes. Our method first identifies a sparse set of voxels that likely belong to microtubules. Similar to prior work, we then enumerate potential edges between these voxels, which we represent in a candidate graph. Tracks of microtubules are found by selecting nodes and edges in the candidate graph by solving a constrained optimization problem incorporating biological priors on microtubule structure. For this, we present a novel integer linear programming formulation, which results in speed-ups of three orders of magnitude and an increase of 53% in accuracy compared to prior art (evaluated on three 1 . 2 × 4 × 4µm volumes of Drosophila neural tissue). We also propose a scheme to solve the optimization problem in a block-wise fashion, which allows distributed tracking and is necessary to process very large electron microscopy volumes. Finally, we release a benchmark dataset for microtubule tracking, here used for training, testing and validation, consisting of eight 30 x 1000 x 1000 voxel blocks (1 . 2 × 4 × 4µm) of densely annotated microtubules in the CREMI data set (https://github.com/nilsec/micron).

    View Publication Page
    12/12/23 | Model-Based Inference of Synaptic Plasticity Rules
    Yash Mehta , Danil Tyulmankov , Adithya E. Rajagopalan , Glenn C. Turner , James E. Fitzgerald , Jan Funke
    bioRxiv. 2023 Dec 12:. doi: 10.1101/2023.12.11.571103

    Understanding learning through synaptic plasticity rules in the brain is a grand challenge for neuroscience. Here we introduce a novel computational framework for inferring plasticity rules from experimental data on neural activity trajectories and behavioral learning dynamics. Our methodology parameterizes the plasticity function to provide theoretical interpretability and facilitate gradient-based optimization. For instance, we use Taylor series expansions or multilayer perceptrons to approximate plasticity rules, and we adjust their parameters via gradient descent over entire trajectories to closely match observed neural activity and behavioral data. Notably, our approach can learn intricate rules that induce long nonlinear time-dependencies, such as those incorporating postsynaptic activity and current synaptic weights. We validate our method through simulations, accurately recovering established rules, like Oja’s, as well as more complex hypothetical rules incorporating reward-modulated terms. We assess the resilience of our technique to noise and, as a tangible application, apply it to behavioral data from Drosophila during a probabilistic reward-learning experiment. Remarkably, we identify an active forgetting component of reward learning in flies that enhances the predictive accuracy of previous models. Overall, our modeling framework provides an exciting new avenue to elucidate the computational principles governing synaptic plasticity and learning in the brain.

    View Publication Page
    07/29/23 | Network Statistics of the Whole-Brain Connectome of Drosophila
    Albert Lin , Runzhe Yang , Sven Dorkenwald , Arie Matsliah , Amy R. Sterling , Philipp Schlegel , Szi-chieh Yu , Claire E. McKellar , Marta Costa , Katharina Eichler , Alexander Shakeel Bates , Nils Eckstein , Jan Funke , Gregory S.X.E. Jefferis , Mala Murthy
    bioRxiv. 2023 Jul 29:. doi: 10.1101/2023.07.29.551086

    Animal brains are complex organs composed of thousands of interconnected neurons. Characterizing the network properties of these brains is a requisite step towards understanding mechanisms of computation and information flow. With the completion of the Flywire project, we now have access to the connectome of a complete adult Drosophila brain, containing 130,000 neurons and millions of connections. Here, we present a statistical summary and data products of the Flywire connectome, delving into its network properties and topological features. To gain insights into local connectivity, we computed the prevalence of two- and three-node network motifs, examined their strengths and neurotransmitter compositions, and compared these topological metrics with wiring diagrams of other animals. We uncovered a population of highly connected neurons known as the “rich club” and identified subsets of neurons that may serve as integrators or broadcasters of signals. Finally, we examined subnetworks based on 78 anatomically defined brain regions. The freely available data and neuron populations presented here will serve as a foundation for models and experiments exploring the relationship between neural activity and anatomical structure.

    View Publication Page
    08/08/22 | Neural network organization for courtship-song feature detection in Drosophila.
    Baker CA, McKellar C, Pang R, Nern A, Dorkenwald S, Pacheco DA, Eckstein N, Funke J, Dickson BJ, Murthy M
    Current Biology. 2022 Aug 08;32(15):3317-3333.e7. doi: 10.1016/j.cub.2022.06.019

    Animals communicate using sounds in a wide range of contexts, and auditory systems must encode behaviorally relevant acoustic features to drive appropriate reactions. How feature detection emerges along auditory pathways has been difficult to solve due to challenges in mapping the underlying circuits and characterizing responses to behaviorally relevant features. Here, we study auditory activity in the Drosophila melanogaster brain and investigate feature selectivity for the two main modes of fly courtship song, sinusoids and pulse trains. We identify 24 new cell types of the intermediate layers of the auditory pathway, and using a new connectomic resource, FlyWire, we map all synaptic connections between these cell types, in addition to connections to known early and higher-order auditory neurons-this represents the first circuit-level map of the auditory pathway. We additionally determine the sign (excitatory or inhibitory) of most synapses in this auditory connectome. We find that auditory neurons display a continuum of preferences for courtship song modes and that neurons with different song-mode preferences and response timescales are highly interconnected in a network that lacks hierarchical structure. Nonetheless, we find that the response properties of individual cell types within the connectome are predictable from their inputs. Our study thus provides new insights into the organization of auditory coding within the Drosophila brain.

    View Publication Page
    10/26/23 | Neural-circuit basis of song preference learning in fruit flies
    Keisuke Imoto , Yuki Ishikawa , Yoshinori Aso , Jan Funke , Ryoya Tanaka , Azusa Kamikouchi
    bioRxiv. 2023 Oct 26:. doi: 10.1101/2023.10.24.563693

    As observed in human language learning and song learning in birds, the fruit fly Drosophila melanogaster changes its' auditory behaviors according to prior sound experiences. Female flies that have heard male courtship songs of the same species are less responsive to courtship songs of different species. This phenomenon, known as song preference learning in flies, requires GABAergic input to pC1 neurons in the central brain, with these neurons playing a key role in mating behavior by integrating multimodal sensory and internal information. The neural circuit basis of this GABAergic input, however, has not yet been identified. Here, we find that pCd-2 neurons, totaling four cells per hemibrain and expressing the sex-determination gene doublesex, provide the GABAergic input to pC1 neurons for song preference learning. First, RNAi-mediated knockdown of GABA production in pCd-2 neurons abolished song preference learning. Second, pCd-2 neurons directly, and in many cases mutually, connect with pC1 neurons, suggesting the existence of reciprocal circuits between pC1 and pCd-2 neurons. Finally, GABAergic and dopaminergic inputs to pCd-2 neurons are necessary for song preference learning. Together, this study suggests that reciprocal circuits between pC1 and pCd-2 neurons serve as a sensory and internal state-integrated hub, allowing flexible control over female copulation. Consequently, this provides a neural circuit model that underlies experience-dependent auditory plasticity.

    View Publication Page
    06/29/23 | Neuronal wiring diagram of an adult brain.
    Dorkenwald S, Matsliah A, Sterling AR, Schlegel P, Yu S, McKellar CE, Lin A, Costa M, Eichler K, Yin Y, Silversmith W, Schneider-Mizell C, Jordan CS, Brittain D, Halageri A, Kuehner K, Ogedengbe O, Morey R, Gager J, Kruk K, Perlman E, Yang R, Deutsch D, Bland D, Sorek M, Lu R, Macrina T, Lee K, Bae JA, Mu S, Nehoran B, Mitchell E, Popovych S, Wu J, Jia Z, Castro M, Kemnitz N, Ih D, Bates AS, Eckstein N, Funke J, Collman F, Bock DD, Jefferis GS, Seung HS, Murthy M, FlyWire Consortium
    bioRxiv. 2023 Jun 29:. doi: 10.1101/2023.06.27.546656

    Connections between neurons can be mapped by acquiring and analyzing electron microscopic (EM) brain images. In recent years, this approach has been applied to chunks of brains to reconstruct local connectivity maps that are highly informative, yet inadequate for understanding brain function more globally. Here, we present the first neuronal wiring diagram of a whole adult brain, containing 5×10 chemical synapses between ∼130,000 neurons reconstructed from a female . The resource also incorporates annotations of cell classes and types, nerves, hemilineages, and predictions of neurotransmitter identities. Data products are available by download, programmatic access, and interactive browsing and made interoperable with other fly data resources. We show how to derive a projectome, a map of projections between regions, from the connectome. We demonstrate the tracing of synaptic pathways and the analysis of information flow from inputs (sensory and ascending neurons) to outputs (motor, endocrine, and descending neurons), across both hemispheres, and between the central brain and the optic lobes. Tracing from a subset of photoreceptors all the way to descending motor pathways illustrates how structure can uncover putative circuit mechanisms underlying sensorimotor behaviors. The technologies and open ecosystem of the FlyWire Consortium set the stage for future large-scale connectome projects in other species.

    View Publication Page
    05/09/24 | Neurotransmitter classification from electron microscopy images at synaptic sites in Drosophila melanogaster
    Eckstein N, Bates AS, Champion A, Du M, Yin Y, Schlegel P, Lu AK, Rymer T, Finley-May S, Paterson T, Parekh R, Dorkenwald S, Matsliah A, Yu S, McKellar C, Sterling A, Eichler K, Costa M, Seung S, Murthy M, Hartenstein V, Jefferis GS, Funke J
    Cell. 2024 May 09;187(10):2574-2594.e23. doi: 10.1016/j.cell.2024.03.016

    High-resolution electron microscopy of nervous systems has enabled the reconstruction of synaptic connectomes. However, we do not know the synaptic sign for each connection (i.e., whether a connection is excitatory or inhibitory), which is implied by the released transmitter. We demonstrate that artificial neural networks can predict transmitter types for presynapses from electron micrographs: a network trained to predict six transmitters (acetylcholine, glutamate, GABA, serotonin, dopamine, octopamine) achieves an accuracy of 87% for individual synapses, 94% for neurons, and 91% for known cell types across a D. melanogaster whole brain. We visualize the ultrastructural features used for prediction, discovering subtle but significant differences between transmitter phenotypes. We also analyze transmitter distributions across the brain and find that neurons that develop together largely express only one fast-acting transmitter (acetylcholine, glutamate, or GABA). We hope that our publicly available predictions act as an accelerant for neuroscientific hypothesis generation for the fly.

    View Publication Page