Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

136 Janelia Publications

Showing 21-30 of 136 results
Your Criteria:
    10/19/13 | Biophysical mechanisms of computation in a looming sensitive neuron.
    Simon P. Peron
    The Computing Dendrite. 2013 Oct 19;11:277-293. doi: 10.1007/978-1-4614-8094-5_17

    The lobula giant movement detector (LGMD) is a large-field visual interneuron believed to be involved in collision avoidance and escape behaviors in orthopteran insects, such as locusts. Responses to approaching—or looming—stimuli are highly stereotypical, producing a peak that signals an angular size threshold. Over the past several decades, investigators have elucidated many of the mechanisms underpinning this response, demonstrating that the LGMD implements a multiplication in log-transformed coordinates. Furthermore, the LGMD possesses several mechanisms that preclude it responding to non-looming stimuli. This chapter explores these biophysical mechanisms, as well as highlighting insights the LGMD provides into general principles of dendritic integration.

    View Publication Page
    11/01/13 | Caged naloxone reveals opioid signaling deactivation kinetics.
    Banghart MR, Williams JT, Shah RC, Lavis LD, Sabatini BL
    Molecular Pharmacology. 2013 Nov;84(5):687-95. doi: 10.1124/mol.113.088096

    The spatiotemporal dynamics of opioid signaling in the brain remain poorly defined. Photoactivatable opioid ligands provide a means to quantitatively measure these dynamics and their underlying mechanisms in brain tissue. Although activation kinetics can be assessed using caged agonists, deactivation kinetics are obscured by slow clearance of agonist in tissue. To reveal deactivation kinetics of opioid signaling we developed a caged competitive antagonist that can be quickly photoreleased in sufficient concentrations to render agonist dissociation effectively irreversible. Carboxynitroveratryl-naloxone (CNV-NLX), a caged analog of the competitive opioid antagonist NLX, was readily synthesized from commercially available NLX in good yield and found to be devoid of antagonist activity at heterologously expressed opioid receptors. Photolysis in slices of rat locus coeruleus produced a rapid inhibition of the ionic currents evoked by multiple agonists of the μ-opioid receptor (MOR), but not of α-adrenergic receptors, which activate the same pool of ion channels. Using the high-affinity peptide agonist dermorphin, we established conditions under which light-driven deactivation rates are independent of agonist concentration and thus intrinsic to the agonist-receptor complex. Under these conditions, some MOR agonists yielded deactivation rates that are limited by G protein signaling, whereas others appeared limited by agonist dissociation. Therefore, the choice of agonist determines which feature of receptor signaling is unmasked by CNV-NLX photolysis.

    View Publication Page
    04/24/13 | Carbofluoresceins and carborhodamines as scaffolds for high-contrast fluorogenic probes.
    Grimm JB, Sung AJ, Legant WR, Hulamm P, Matlosz SM, Betzig E, Lavis LD
    ACS Chemical Biology. 2013 Apr 24;8(6):1303-10. doi: 10.1021/cb4000822

    Fluorogenic molecules are important tools for advanced biochemical and biological experiments. The extant collection of fluorogenic probes is incomplete, however, leaving regions of the electromagnetic spectrum unutilized. Here, we synthesize green-excited fluorescent and fluorogenic analogues of the classic fluorescein and rhodamine 110 fluorophores by replacement of the xanthene oxygen with a quaternary carbon. These anthracenyl "carbofluorescein" and "carborhodamine 110" fluorophores exhibit excellent fluorescent properties and can be masked with enzyme- and photolabile groups to prepare high-contrast fluorogenic molecules useful for live cell imaging experiments and super-resolution microscopy. Our divergent approach to these red-shifted dye scaffolds will enable the preparation of numerous novel fluorogenic probes with high biological utility.

    View Publication Page
    Zlatic Lab
    02/01/13 | Cbl-associated protein regulates assembly and function of two tension-sensing structures in Drosophila.
    Bharadwaj R, Roy M, Ohyama T, Sivan-Loukianova E, Delannoy M, Lloyd TE, Zlatic M, Eberl DF, Kolodkin AL
    Development. 2013 Feb 1;140:627-38. doi: 10.1242/dev.085100

    Cbl-associated protein (CAP) localizes to focal adhesions and associates with numerous cytoskeletal proteins; however, its physiological roles remain unknown. Here, we demonstrate that Drosophila CAP regulates the organization of two actin-rich structures in Drosophila: muscle attachment sites (MASs), which connect somatic muscles to the body wall; and scolopale cells, which form an integral component of the fly chordotonal organs and mediate mechanosensation. Drosophila CAP mutants exhibit aberrant junctional invaginations and perturbation of the cytoskeletal organization at the MAS. CAP depletion also results in collapse of scolopale cells within chordotonal organs, leading to deficits in larval vibration sensation and adult hearing. We investigate the roles of different CAP protein domains in its recruitment to, and function at, various muscle subcellular compartments. Depletion of the CAP-interacting protein Vinculin results in a marked reduction in CAP levels at MASs, and vinculin mutants partially phenocopy Drosophila CAP mutants. These results show that CAP regulates junctional membrane and cytoskeletal organization at the membrane-cytoskeletal interface of stretch-sensitive structures, and they implicate integrin signaling through a CAP/Vinculin protein complex in stretch-sensitive organ assembly and function.

    View Publication Page
    07/01/13 | Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions.
    Mistry J, Finn RD, Eddy SR, Bateman A, Punta M
    Nucleic Acids Research. 2013 Jul;41(12):e121. doi: 10.1093/nar/gkt263

    Detection of protein homology via sequence similarity has important applications in biology, from protein structure and function prediction to reconstruction of phylogenies. Although current methods for aligning protein sequences are powerful, challenges remain, including problems with homologous overextension of alignments and with regions under convergent evolution. Here, we test the ability of the profile hidden Markov model method HMMER3 to correctly assign homologous sequences to >13,000 manually curated families from the Pfam database. We identify problem families using protein regions that match two or more Pfam families not currently annotated as related in Pfam. We find that HMMER3 E-value estimates seem to be less accurate for families that feature periodic patterns of compositional bias, such as the ones typically observed in coiled-coils. These results support the continued use of manually curated inclusion thresholds in the Pfam database, especially on the subset of families that have been identified as problematic in experiments such as these. They also highlight the need for developing new methods that can correct for this particular type of compositional bias.

    View Publication Page
    Ji Lab

    Inherent aberrations of gradient index (GRIN) lenses used in fluorescence endomicroscopes deteriorate imaging performance. Using adaptive optics, we characterized and corrected the on-axis and off-axis aberrations of a GRIN lens with NA 0.8 at multiple focal planes. We demonstrated a rotational-transformation-based correction procedure, which enlarged the imaging area with diffraction-limited resolution with only two aberration measurements. 204.8 × 204.8 µm2 images of fluorescent beads and brain slices before and after AO corrections were obtained, with evident improvements in both image sharpness and brightness after AO correction. These results show great promises of applying adaptive optical two-photon fluorescence endomicroscope to three-dimensional (3D) imaging.

    View Publication Page
    04/22/13 | Clonal development and organization of the adult Drosophila central brain.
    Yu H, Awasaki T, Schroeder MD, Long F, Yang JS, He Y, Ding P, Kao J, Wu GY, Peng H, Myers G, Lee T
    Current biology : CB. 2013 Apr 22;23:633-43. doi: 10.1016/j.cub.2013.02.057

    BACKGROUND: The insect brain can be divided into neuropils that are formed by neurites of both local and remote origin. The complexity of the interconnections obscures how these neuropils are established and interconnected through development. The Drosophila central brain develops from a fixed number of neuroblasts (NBs) that deposit neurons in regional clusters. RESULTS: By determining individual NB clones and pursuing their projections into specific neuropils, we unravel the regional development of the brain neural network. Exhaustive clonal analysis revealed 95 stereotyped neuronal lineages with characteristic cell-body locations and neurite trajectories. Most clones show complex projection patterns, but despite the complexity, neighboring clones often coinnervate the same local neuropil or neuropils and further target a restricted set of distant neuropils. CONCLUSIONS: These observations argue for regional clonal development of both neuropils and neuropil connectivity throughout the Drosophila central brain.

    View Publication Page
    07/01/13 | Computational identification of functional RNA homologs in metagenomic data.
    Nawrocki EP, Eddy SR
    RNA Biology. 2013 Jul 1;10:1170-9. doi: 10.4161/rna.25038

    A key step toward understanding a metagenomics data set is the identification of functional sequence elements within it, such as protein coding genes and structural RNAs. Relative to protein coding genes, structural RNAs are more difficult to identify because of their reduced alphabet size, lack of open reading frames, and short length. Infernal is a software package that implements "covariance models" (CMs) for RNA homology search, which harness both sequence and structural conservation when searching for RNA homologs. Thanks to the added statistical signal inherent in the secondary structure conservation of many RNA families, Infernal is more powerful than sequence-only based methods such as BLAST and profile HMMs. Together with the Rfam database of CMs, Infernal is a useful tool for identifying RNAs in metagenomics data sets.

    View Publication Page
    07/10/13 | Contributions of the 12 neuron classes in the fly lamina to motion vision.
    Tuthill JC, Nern A, Stephen L. Holtz , Rubin GM, Reiser MB
    Neuron. 07/2013;79:128-140. doi: http://dx.doi.org/10.1016/j.neuron.2013.05.024

    Motion detection is a fundamental neural computation performed by many sensory systems. In the fly, local motion computation is thought to occur within the first two layers of the visual system, the lamina and medulla. We constructed specific genetic driver lines for each of the 12 neuron classes in the lamina. We then depolarized and hyperpolarized each neuron type and quantified fly behavioral responses to a diverse set of motion stimuli. We found that only a small number of lamina output neurons are essential for motion detection, while most neurons serve to sculpt and enhance these feedforward pathways. Two classes of feedback neurons (C2 and C3), and lamina output neurons (L2 and L4), are required for normal detection of directional motion stimuli. Our results reveal a prominent role for feedback and lateral interactions in motion processing and demonstrate that motion-dependent behaviors rely on contributions from nearly all lamina neuron classes.

    View Publication Page
    02/26/13 | Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells.
    Huang C, Sugino K, Shima Y, Guo C, Bai S, Mensh BD, Nelson SB, Hantman AW
    eLife. 2013 Feb 26;2:e00400. doi: 10.7554/eLife.00400

    Cerebellar granule cells constitute the majority of neurons in the brain and are the primary conveyors of sensory and motor-related mossy fiber information to Purkinje cells. The functional capability of the cerebellum hinges on whether individual granule cells receive mossy fiber inputs from multiple precerebellar nuclei or are instead unimodal; this distinction is unresolved. Using cell-type-specific projection mapping with synaptic resolution, we observed the convergence of separate sensory (upper body proprioceptive) and basilar pontine pathways onto individual granule cells and mapped this convergence across cerebellar cortex. These findings inform the long-standing debate about the multimodality of mammalian granule cells and substantiate their associative capacity predicted in the Marr-Albus theory of cerebellar function. We also provide evidence that the convergent basilar pontine pathways carry corollary discharges from upper body motor cortical areas. Such merging of related corollary and sensory streams is a critical component of circuit models of predictive motor control. DOI:http://dx.doi.org/10.7554/eLife.00400.001.

    View Publication Page