Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

general_search_page-panel_pane_1 | views_panes

69 Janelia Publications

Showing 31-40 of 69 results
Your Criteria:
    12/13/18 | Gene flow mediates the role of sex chromosome meiotic drive during complex speciation.
    Meiklejohn CD, Landeen EL, Gordon KE, Rzatkiewicz T, Kingan SB, Geneva AJ, Vedanayagam JP, Muirhead CA, Garrigan D, Stern DL, Presgraves DC
    eLife. 2018 Dec 13;7:. doi: 10.7554/eLife.35468

    During speciation, sex chromosomes often accumulate interspecific genetic incompatibilities faster than the rest of the genome. The drive theory posits that sex chromosomes are susceptible to recurrent bouts of meiotic drive and suppression, causing the evolutionary build-up of divergent cryptic sex-linked drive systems and, incidentally, genetic incompatibilities. To assess the role of drive during speciation, we combine high-resolution genetic mapping of X-linked hybrid male sterility with population genomics analyses of divergence and recent gene flow between the fruitfly species, and . Our findings reveal a high density of genetic incompatibilities and a corresponding dearth of gene flow on the X chromosome. Surprisingly, we find that a known drive element recently migrated between species and, rather than contributing to interspecific divergence, caused a strong reduction in local sequence divergence, undermining the evolution of hybrid sterility. Gene flow can therefore mediate the effects of selfish genetic elements during speciation.

    View Publication Page
    05/09/22 | Gene structure-based homology search identifies highly divergent putative effector gene family.
    Stern DL, Han C
    Genome Biology and Evolution. 2022 May 09:. doi: 10.1093/gbe/evac069

    Homology of highly divergent genes often cannot be determined from sequence similarity alone. For example, we recently identified in the aphid Hormaphis cornu a family of rapidly evolving bicycle genes, which encode novel proteins implicated as plant gall effectors, and sequence similarity search methods yielded few putative bicycle homologs in other species. Coding sequence-independent features of genes, such as intron-exon boundaries, often evolve more slowly than coding sequences, however, and can provide complementary evidence for homology. We found that a linear logistic regression classifier using only structural features of bicycle genes identified many putative bicycle homologs in other species. Independent evidence from sequence features and intron locations supported homology assignments. To test the potential roles of bicycle genes in other aphids, we sequenced the genome of a second gall-forming aphid, Tetraneura nigriabdominalis, and found that many bicycle genes are strongly expressed in the salivary glands of the gall forming foundress. In addition, bicycle genes are strongly overexpressed in the salivary glands of a non-gall forming aphid, Acyrthosiphon pisum, and in the non-gall forming generations of Hormaphis cornu. These observations suggest that Bicycle proteins may be used by multiple aphid species to manipulate plants in diverse ways. Incorporation of gene structural features into sequence search algorithms may aid identification of deeply divergent homologs, especially of rapidly evolving genes involved in host-parasite interactions.

    View Publication Page
    05/25/16 | Genetic and environmental control of neurodevelopmental robustness in Drosophila.
    Mellert DJ, Williamson WR, Shirangi TR, Card GM, Truman JW
    PLoS One. 2016 May 25;11(5):e0155957. doi: 10.1371/journal.pone.0155957

    Interindividual differences in neuronal wiring may contribute to behavioral individuality and affect susceptibility to neurological disorders. To investigate the causes and potential consequences of wiring variation in Drosophila melanogaster, we focused on a hemilineage of ventral nerve cord interneurons that exhibits morphological variability. We find that late-born subclasses of the 12A hemilineage are highly sensitive to genetic and environmental variation. Neurons in the second thoracic segment are particularly variable with regard to two developmental decisions, whereas its segmental homologs are more robust. This variability "hotspot" depends on Ultrabithorax expression in the 12A neurons, indicating variability is cell-intrinsic and under genetic control. 12A development is more variable and sensitive to temperature in long-established laboratory strains than in strains recently derived from the wild. Strains with a high frequency of one of the 12A variants also showed a high frequency of animals with delayed spontaneous flight initiation, whereas other wing-related behaviors did not show such a correlation and were thus not overtly affected by 12A variation. These results show that neurodevelopmental robustness is variable and under genetic control in Drosophila and suggest that the fly may serve as a model for identifying conserved gene pathways that stabilize wiring in stressful developmental environments. Moreover, some neuronal lineages are variation hotspots and thus may be more amenable to evolutionary change.

    View Publication Page
    03/09/17 | Genetic and transgenic reagents for Drosophila simulans, D. mauritiana, D. yakuba, D. santomea and D. virilis.
    Stern DL, Crocker J, Ding Y, Frankel N, Kappes G, Kim E, Kuzmickas R, Lemire A, Mast JD, Picard S
    G3 (Bethesda, Md.). 2017 Mar 09;7(4):1339-47. doi: 10.1534/g3.116.038885

    Species of the Drosophila melanogaster species subgroup, including the species D. simulans, D. mauritiana, D. yakuba, and D. santomea, have long served as model systems for studying evolution. Studies in these species have been limited, however, by a paucity of genetic and transgenic reagents. Here we describe a collection of transgenic and genetic strains generated to facilitate genetic studies within and between these species. We have generated many strains of each species containing mapped piggyBac transposons including an enhanced yellow fluorescent protein gene expressed in the eyes and a phiC31 attP site-specific integration site. We have tested a subset of these lines for integration efficiency and reporter gene expression levels. We have also generated a smaller collection of other lines expressing other genetically encoded fluorescent molecules in the eyes and a number of other transgenic reagents that will be useful for functional studies in these species. In addition, we have mapped the insertion locations of 58 transposable elements in D. virilis that will be useful for genetic mapping studies.

    View Publication Page
    03/16/15 | Genetic architecture and functional characterization of genes underlying the rapid diversification of male external genitalia between Drosophila simulans and Drosophila mauritiana.
    Tanaka KM, Hopfen C, Herbert MR, Schlötterer C, Stern DL, Masly JP, McGregor AP, Nunes MD
    Genetics. 2015 Mar 16:. doi: 10.1534/genetics.114.174045

    Male sexual characters are often among the first traits to diverge between closely related species and identifying the genetic basis of such changes can contribute to our understanding of their evolutionary history. However, little is known about the genetic architecture or the specific genes underlying the evolution of male genitalia. The morphology of the claspers, posterior lobes and anal plates exhibit striking differences between Drosophila mauritiana and Drosophila simulans. Using QTL and introgression-based high-resolution mapping, we identified several small regions on chromosome arms 3L and 3R that contribute to differences in these traits. However, we found that the loci underlying the evolution of clasper differences between these two species are independent from those that contribute to posterior lobe and anal plate divergence. Furthermore, while most of the loci affect each trait in the same direction and act additively, we also found evidence for epistasis between loci for clasper bristle number. In addition, we conducted an RNAi screen in D. melanogaster to investigate if positional and expression candidate genes located on chromosome 3L, are also involved in genital development. We found that six of these genes, including components of Wnt signaling and male-specific lethal 3 (msl3), regulate the development of genital traits consistent with the effects of the introgressed regions where they are located and that thus represent promising candidate genes for the evolution these traits.

    View Publication Page
    12/03/14 | Identification of loci that cause phenotypic variation in diverse species with the reciprocal hemizygosity test.
    Stern DL
    Trends in Genetics. 2014 Dec;30(12):547-554. doi: 10.1016/j.tig.2014.09.006

    The reciprocal hemizygosity test is a straightforward genetic test that can positively identify genes that have evolved to contribute to a phenotypic difference between strains or between species. The test involves a comparison between hybrids that are genetically identical throughout the genome except at the test locus, which is rendered hemizygous for alternative alleles from the two parental strains. If the two reciprocal hemizygotes display different phenotypes, then the two parental alleles must have evolved. New methods for targeted mutagenesis will allow application of the reciprocal hemizygosity test in many organisms. This review discusses the principles, advantages, and limitations of the test.

    View Publication Page
    07/24/14 | Looking under the lamp post: neither fruitless nor doublesex has evolved to generate divergent male courtship in Drosophila.
    Cande J, Stern DL, Morita T, Prud'homme B, Gompel N
    Cell Reports. 2014 Jul 24;8(2):363-70. doi: 10.1016/j.celrep.2014.06.023

    How do evolved genetic changes alter the nervous system to produce different patterns of behavior? We address this question using Drosophila male courtship behavior, which is innate, stereotyped, and evolves rapidly between species. D. melanogaster male courtship requires the male-specific isoforms of two transcription factors, fruitless and doublesex. These genes underlie genetic switches between female and male behaviors, making them excellent candidate genes for courtship behavior evolution. We tested their role in courtship evolution by transferring the entire locus for each gene from divergent species to D. melanogaster. We found that despite differences in Fru+ and Dsx+ cell numbers in wild-type species, cross-species transgenes rescued D. melanogaster courtship behavior and no species-specific behaviors were conferred. Therefore, fru and dsx are not a significant source of evolutionary variation in courtship behavior.

    View Publication Page
    01/16/15 | Low affinity binding site clusters confer Hox specificity and regulatory robustness.
    Crocker J, Abe N, Rinaldi L, McGregor AP, Frankel N, Wang S, Alsawadi A, Valenti P, Plaza S, Payre F, Mann RS, Stern DL
    Cell. 2015 Jan 15;160:191-203. doi: 10.1016/j.cell.2014.11.041

    In animals, Hox transcription factors define regional identity in distinct anatomical domains. How Hox genes encode this specificity is a paradox, because different Hox proteins bind with high affinity in vitro to similar DNA sequences. Here, we demonstrate that the Hox protein Ultrabithorax (Ubx) in complex with its cofactor Extradenticle (Exd) bound specifically to clusters of very low affinity sites in enhancers of the shavenbaby gene of Drosophila. These low affinity sites conferred specificity for Ubx binding in vivo, but multiple clustered sites were required for robust expression when embryos developed in variable environments. Although most individual Ubx binding sites are not evolutionarily conserved, the overall enhancer architecture-clusters of low affinity binding sites-is maintained and required for enhancer function. Natural selection therefore works at the level of the enhancer, requiring a particular density of low affinity Ubx sites to confer both specific and robust expression.

    View Publication Page
    11/14/13 | Motor control of Drosophila courtship song.
    Shirangi TR, Stern DL, Truman JW
    Cell Reports. 2013 Nov 14;5:678-86. doi: 10.1016/j.celrep.2013.09.039

    Many animals utilize acoustic signals-or songs-to attract mates. During courtship, Drosophila melanogaster males vibrate a wing to produce trains of pulses and extended tone, called pulse and sine song, respectively. Courtship songs in the genus Drosophila are exceedingly diverse, and different song features appear to have evolved independently of each other. How the nervous system allows such diversity to evolve is not understood. Here, we identify a wing muscle in D. melanogaster (hg1) that is uniquely male-enlarged. The hg1 motoneuron and the sexually dimorphic development of the hg1 muscle are required specifically for the sine component of the male song. In contrast, the motoneuron innervating a sexually monomorphic wing muscle, ps1, is required specifically for a feature of pulse song. Thus, individual wing motor pathways can control separate aspects of courtship song and may provide a "modular" anatomical substrate for the evolution of diverse songs.

    View Publication Page
    01/31/13 | Multi-channel acoustic recording and automated analysis of Drosophila courtship songs.
    Arthur BJ, Sunayama-Morita T, Coen P, Murthy M, Stern DL
    BMC Biology. 2013 Jan 31;11:11. doi: 10.1186/1741-7007-11-11

    Drosophila melanogaster has served as a powerful model system for genetic studies of courtship songs. To accelerate research on the genetic and neural mechanisms underlying courtship song, we have developed a sensitive recording system to simultaneously capture the acoustic signals from 32 separate pairs of courting flies as well as software for automated segmentation of songs.

    View Publication Page