Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

48 Janelia Publications

Showing 21-30 of 48 results
Your Criteria:
    04/27/15 | High-performance probes for light and electron microscopy.
    Viswanathan S, Williams ME, Bloss EB, Stasevich TJ, Speer CM, Nern A, Pfeiffer BD, Hooks BM, Li W, English BP, Tian T, Henry GL, Macklin JJ, Patel R, Gerfen CR, Zhuang X, Wang Y, Rubin GM, Looger LL
    Nature Methods. 2015 Apr 27;12(6):568-76. doi: 10.1038/nmeth.3365

    We describe an engineered family of highly antigenic molecules based on GFP-like fluorescent proteins. These molecules contain numerous copies of peptide epitopes and simultaneously bind IgG antibodies at each location. These 'spaghetti monster' fluorescent proteins (smFPs) distributed well in neurons, notably into small dendrites, spines and axons. smFP immunolabeling localized weakly expressed proteins not well resolved with traditional epitope tags. By varying epitope and scaffold, we generated a diverse family of mutually orthogonal antigens. In cultured neurons and mouse and fly brains, smFP probes allowed robust, orthogonal multicolor visualization of proteins, cell populations and neuropil. smFP variants complement existing tracers and greatly increase the number of simultaneous imaging channels, and they performed well in advanced preparations such as array tomography, super-resolution fluorescence imaging and electron microscopy. In living cells, the probes improved single-molecule image tracking and increased yield for RNA-seq. These probes facilitate new experiments in connectomics, transcriptomics and protein localization.

    View Publication Page
    02/13/15 | Labeling of active neural circuits in vivo with designed calcium integrators.
    Fosque BF, Sun Y, Dana H, Yang C, Ohyama T, Tadross MR, Patel R, Zlatic M, Kim DS, Ahrens MB, Jayaraman V, Looger LL, Schreiter ER
    Science. 2015 Feb 13;347(6223):755-60. doi: 10.1126/science.1260922

    The identification of active neurons and circuits in vivo is a fundamental challenge in understanding the neural basis of behavior. Genetically encoded calcium (Ca(2+)) indicators (GECIs) enable quantitative monitoring of cellular-resolution activity during behavior. However, such indicators require online monitoring within a limited field of view. Alternatively, post hoc staining of immediate early genes (IEGs) indicates highly active cells within the entire brain, albeit with poor temporal resolution. We designed a fluorescent sensor, CaMPARI, that combines the genetic targetability and quantitative link to neural activity of GECIs with the permanent, large-scale labeling of IEGs, allowing a temporally precise "activity snapshot" of a large tissue volume. CaMPARI undergoes efficient and irreversible green-to-red conversion only when elevated intracellular Ca(2+) and experimenter-controlled illumination coincide. We demonstrate the utility of CaMPARI in freely moving larvae of zebrafish and flies, and in head-fixed mice and adult flies.

    View Publication Page
    02/04/23 | Large-scale brain-wide neural recording in nonhuman primates
    Eric M. Trautmann , Janis K. Hesse , Gabriel M. Stine , Ruobing Xia , Shude Zhu , Daniel J. O’Shea , Bill Karsh , Jennifer Colonell , Frank F. Lanfranchi , Saurabh Vyas , Andrew Zimnik , Natalie A. Steinmann , Daniel A. Wagenaar , Alexandru Andrei , Carolina Mora Lopez , John O’Callaghan , Jan Putzeys , Bogdan C. Raducanu , Marleen Welkenhuysen , Mark Churchland , Tirin Moore , Michael Shadlen , Krishna Shenoy , Doris Tsao , Barundeb Dutta , Timothy Harris
    bioRxiv. 2023 Feb 04:. doi: 10.1101/2023.02.01.526664

    High-density, integrated silicon electrodes have begun to transform systems neuroscience, by enabling large-scale neural population recordings with single cell resolution. Existing technologies, however, have provided limited functionality in nonhuman primate species such as macaques, which offer close models of human cognition and behavior. Here, we report the design, fabrication, and performance of Neuropixels 1.0-NHP, a high channel count linear electrode array designed to enable large-scale simultaneous recording in superficial and deep structures within the macaque or other large animal brain. These devices were fabricated in two versions: 4416 electrodes along a 45 mm shank, and 2496 along a 25 mm shank. For both versions, users can programmably select 384 channels, enabling simultaneous multi-area recording with a single probe. We demonstrate recording from over 3000 single neurons within a session, and simultaneous recordings from over 1000 neurons using multiple probes. This technology represents a significant increase in recording access and scalability relative to existing technologies, and enables new classes of experiments involving fine-grained electrophysiological characterization of brain areas, functional connectivity between cells, and simultaneous brain-wide recording at scale.

    View Publication Page
    03/01/14 | Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals.
    Berenyi A, Somogyvári Z, Nagy AJ, Roux L, Long JD, Fujisawa S, Stark E, Leonardo A, Harris TD, Buzsáki G
    Journal of Neurophysiology. 2014 Mar;111(5):1132-49. doi: 10.1152/jn.00785.2013

    Monitoring representative fractions of neurons from multiple brain circuits in behaving animals is necessary for understanding neuronal computation. Here, we describe a system that allows high-channel-count recordings from a small volume of neuronal tissue using a lightweight signal multiplexing headstage that permits free behavior of small rodents. The system integrates multishank, high-density recording silicon probes, ultraflexible interconnects, and a miniaturized microdrive. These improvements allowed for simultaneous recordings of local field potentials and unit activity from hundreds of sites without confining free movements of the animal. The advantages of large-scale recordings are illustrated by determining the electroanatomic boundaries of layers and regions in the hippocampus and neocortex and constructing a circuit diagram of functional connections among neurons in real anatomic space. These methods will allow the investigation of circuit operations and behavior-dependent interregional interactions for testing hypotheses of neural networks and brain function.

    View Publication Page
    09/15/23 | Low-latency extracellular spike assignment for high-density electrodes at single-neuron resolution
    Chongxi Lai , Dohoung Kim , Brian Lustig , Shinsuke Tanaka , Brian Barbarits , Lakshmi Narayan , Jennifer Colonell , Ole Paulsen , Albert K. Lee , Timothy D. Harris
    bioRxiv. 2023 Sep 15:. doi: 10.1101/2023.09.14.557854

    Real-time neural signal processing is essential for brain-machine interfaces and closed-loop neuronal perturbations. However, most existing applications sacrifice cell-specific identity and temporal spiking information for speed. We developed a hybrid hardware-software system that utilizes a Field Programmable Gate Array (FPGA) chip to acquire and process data in parallel, enabling individual spikes from many simultaneously recorded neurons to be assigned single-neuron identities with 1-millisecond latency. The FPGA assigns labels, validated with ground-truth data, by comparing multichannel spike waveforms from tetrode or silicon probe recordings to a spike-sorted model generated offline in software. This platform allowed us to rapidly inactivate a region in vivo based on spikes from an upstream neuron before these spikes could excite the downstream region. Furthermore, we could decode animal location within 3 ms using data from a population of individual hippocampal neurons. These results demonstrate our system’s suitability for a broad spectrum of research and clinical applications.

    View Publication Page
    11/25/18 | Magnetocaloric materials as switchable high contrast ratio MRI labels.
    Barbic M, Dodd SJ, Morris HD, Dilley N, Marcheschi B, Huston A, Harris TD, Koretsky AP
    Magnetic Resonance in Medicine. 2018 Nov 25;81(4):2238-46. doi: 10.1002/mrm.27615

    PURPOSE: To develop switchable and tunable labels with high contrast ratio for MRI using magnetocaloric materials that have sharp first-order magnetic phase transitions at physiological temperatures and typical MRI magnetic field strengths.

    METHODS: A prototypical magnetocaloric material iron-rhodium (FeRh) was prepared by melt mixing, high-temperature annealing, and ice-water quenching. Temperature- and magnetic field-dependent magnetization measurements of wire-cut FeRh samples were performed on a vibrating sample magnetometer. Temperature-dependent MRI of FeRh samples was performed on a 4.7T MRI.

    RESULTS: Temperature-dependent MRI clearly demonstrated image contrast changes due to the sharp magnetic state transition of the FeRh samples in the MRI magnetic field (4.7T) and at a physiologically relevant temperature (~37°C).

    CONCLUSION: A magnetocaloric material, FeRh, was demonstrated to act as a high contrast ratio switchable MRI contrast agent due to its sharp first-order magnetic phase transition in the DC magnetic field of MRI and at physiologically relevant temperatures. A wide range of magnetocaloric materials are available that can be tuned by materials science techniques to optimize their response under MRI-appropriate conditions and be controllably switched in situ with temperature, magnetic field, or a combination of both.

    View Publication Page
    04/10/23 | Mental navigation and telekinesis with a hippocampal map-based brain-machine interface
    Chongxi Lai , Shinsuke Tanaka , Timothy D. Harris , Albert K. Lee
    bioRxiv. 2023 Apr 10:. doi: 10.1101/2023.04.07.536077

    The hippocampus is critical for recollecting and imagining experiences. This is believed to involve voluntarily drawing from hippocampal memory representations of people, events, and places, including the hippocampus’ map-like representations of familiar environments. However, whether the representations in such “cognitive maps” can be volitionally and selectively accessed is unknown. We developed a brain-machine interface to test if rats could control their hippocampal activity in a flexible, goal-directed, model-based manner. We show that rats can efficiently navigate or direct objects to arbitrary goal locations within a virtual reality arena solely by activating and sustaining appropriate hippocampal representations of remote places. This should provide insight into the mechanisms underlying episodic memory recall, mental simulation/planning, and imagination, and open up possibilities for high-level neural prosthetics utilizing hippocampal representations.

    View Publication Page
    Magee LabHarris Lab
    06/01/10 | Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal.
    Royer S, Zemelman BV, Barbic M, Losonczy A, Buzsáki G, Magee JC
    The European Journal of Neuroscience. 2010 Jun;31:2279-91. doi: 10.1002/cbic.201000254

    Recordings of large neuronal ensembles and neural stimulation of high spatial and temporal precision are important requisites for studying the real-time dynamics of neural networks. Multiple-shank silicon probes enable large-scale monitoring of individual neurons. Optical stimulation of genetically targeted neurons expressing light-sensitive channels or other fast (milliseconds) actuators offers the means for controlled perturbation of local circuits. Here we describe a method to equip the shanks of silicon probes with micron-scale light guides for allowing the simultaneous use of the two approaches. We then show illustrative examples of how these compact hybrid electrodes can be used in probing local circuits in behaving rats and mice. A key advantage of these devices is the enhanced spatial precision of stimulation that is achieved by delivering light close to the recording sites of the probe. When paired with the expression of light-sensitive actuators within genetically specified neuronal populations, these devices allow the relatively straightforward and interpretable manipulation of network activity.

    View Publication Page
    08/06/23 | Multi-day Neuron Tracking in High Density Electrophysiology Recordings using EMD
    Augustine Xiaoran Yuan , Jennifer Colonell , Anna Lebedeva , Adam Charles , Timothy Harris
    bioRxiv. 2023 Aug 06:. doi: 10.1101/2023.08.03.551724

    Accurate tracking of the same neurons across multiple days is crucial for studying changes in neuronal activity during learning and adaptation. New advances in high density extracellular electrophysiology recording probes, such as Neuropixels, provide a promising avenue to accomplish this goal. Identifying the same neurons in multiple recordings is, however, complicated by non-rigid movement of the tissue relative to the recording sites (drift) and loss of signal from some neurons. Here we propose a neuron tracking method that can identify the same cells independent of firing statistics, which are used by most existing methods. Our method is based on between-day non-rigid alignment of spike sorted clusters. We verified the same cell identify using measured visual receptive fields. This method succeeds on datasets separated from one to 47 days, with an 86% average recovery rate.

    View Publication Page
    04/01/19 | Multimodal in vivo brain electrophysiology with integrated glass microelectrodes.
    Hunt DL, Lai C, Smith RD, Lee AK, Harris TD, Barbic M
    Nature Biomedical Engineering. 2019 Apr 01;3(9):741-53. doi: 10.1038/s41551-019-0373-8

    Electrophysiology is the most used approach for the collection of functional data in basic and translational neuroscience, but it is typically limited to either intracellular or extracellular recordings. The integration of multiple physiological modalities for the routine acquisition of multimodal data with microelectrodes could be useful for biomedical applications, yet this has been challenging owing to incompatibilities of fabrication methods. Here, we present a suite of glass pipettes with integrated microelectrodes for the simultaneous acquisition of multimodal intracellular and extracellular information in vivo, electrochemistry assessments, and optogenetic perturbations of neural activity. We used the integrated devices to acquire multimodal signals from the CA1 region of the hippocampus in mice and rats, and show that these data can serve as ground-truth validation for the performance of spike-sorting algorithms. The microdevices are applicable for basic and translational neurobiology, and for the development of next-generation brain-machine interfaces.

    View Publication Page