Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

174 Janelia Publications

Showing 111-120 of 174 results
Your Criteria:
    05/31/21 | Micro-Meta App: an interactive software tool to facilitate the collection of microscopy metadata based on community-driven specifications
    Alex Rigano , Shannon Ehmsen , Serkan Utku Ozturk , Joel Ryan , Alexander Balashov , Mathias Hammer , Koray Kirli , Karl Bellve , Ulrike Boehm , Claire M. Brown , James J. Chambers , Robert A. Coleman , Andrea Cosolo , Orestis Faklaris , Kevin Fogarty , Thomas Guilbert , Anna B. Hamacher , Michelle S. Itano , Daniel P. Keeley , Susanne Kunis , Judith Lacoste , Alex Laude , Willa Ma , Marco Marcello , Paula Montero-Llopis , Glyn Nelson , Roland Nitschke , Jaime A. Pimentel , Stefanie Weidtkamp-Peters , Peter J. Park , Burak Alver , David Grunwald , Caterina Strambio-De-Castillia
    bioRxiv. 2021 May 31:

    For the information content of microscopy images to be appropriately interpreted, reproduced, and meet FAIR (Findable Accessible Interoperable and Reusable) principles, they should be accompanied by detailed descriptions of microscope hardware, image acquisition settings, image pixel and dimensional structure, and instrument performance. Nonetheless, the thorough documentation of imaging experiments is significantly impaired by the lack of community-sanctioned easy-to-use software tools to facilitate the extraction and collection of relevant microscopy metadata. Here we present Micro-Meta App, an intuitive open-source software designed to tackle these issues that was developed in the context of nascent global bioimaging community organizations, including BioImaging North America (BINA) and QUAlity Assessment and REProducibility in Light Microscopy (QUAREP-LiMi), whose goal is to improve reproducibility, data quality and sharing value for imaging experiments. The App provides a user-friendly interface for building comprehensive descriptions of the conditions utilized to produce individual microscopy datasets as specified by the recently proposed 4DN-BINA-OME tiered-system of Microscopy Metadata model. To achieve this goal the App provides a visual guide for a microscope-user to: 1) interactively build diagrammatic representations of hardware configurations of given microscopes that can be easily reused and shared with colleagues needing to document similar instruments. 2) Automatically extracts relevant metadata from image files and facilitates the collection of missing image acquisition settings and calibration metrics associated with a given experiment. 3) Output all collected Microscopy Metadata to interoperable files that can be used for documenting imaging experiments and shared with the community. In addition to significantly lowering the burden of quality assurance, the visual nature of Micro-Meta App makes it particularly suited for training users that have limited knowledge of the intricacies of light microscopy experiments. To ensure wide-adoption by microscope-users with different needs Micro-Meta App closely interoperates with MethodsJ2 and OMERO.mde, two complementary tools described in parallel manuscripts.

    View Publication Page
    12/03/21 | Micro-Meta App: an interactive tool for collecting microscopy metadata based on community specifications.
    Rigano A, Ehmsen S, Öztürk SU, Ryan J, Balashov A, Hammer M, Kirli K, Boehm U, Brown CM, Bellve K, Chambers JJ, Cosolo A, Coleman RA, Faklaris O, Fogarty KE, Guilbert T, Hamacher AB, Itano MS, Keeley DP, Kunis S, Lacoste J, Laude A, Ma WY, Marcello M, Montero-Llopis P, Nelson G, Nitschke R, Pimentel JA, Weidtkamp-Peters S, Park PJ, Alver BH, Grunwald D, Strambio-De-Castillia C
    Nature Methods. 2021 Dec 03;18(12):1489-1495. doi: 10.1038/s41592-021-01315-z

    For quality, interpretation, reproducibility and sharing value, microscopy images should be accompanied by detailed descriptions of the conditions that were used to produce them. Micro-Meta App is an intuitive, highly interoperable, open-source software tool that was developed in the context of the 4D Nucleome (4DN) consortium and is designed to facilitate the extraction and collection of relevant microscopy metadata as specified by the recent 4DN-BINA-OME tiered-system of Microscopy Metadata specifications. In addition to substantially lowering the burden of quality assurance, the visual nature of Micro-Meta App makes it particularly suited for training purposes.

    View Publication Page
    04/21/21 | Model-based Bayesian inference of neural activity and connectivity from all-optical interrogation of a neural circuit
    Aitchison L, Russell L, Packer AM, Yan J, Castonguay P, Häusser M, Turaga SC, I. Guyon , U. V. Luxburg , S. Bengio , H. Wallach , R. Fergus , S. Vishwanathan , R. Garnett
    Advances in Neural Information Processing Systems:

    Population activity measurement by calcium imaging can be combined with cellular resolution optogenetic activity perturbations to enable the mapping of neural connectivity in vivo. This requires accurate inference of perturbed and unperturbed neural activity from calcium imaging measurements, which are noisy and indirect, and can also be contaminated by photostimulation artifacts. We have developed a new fully Bayesian approach to jointly inferring spiking activity and neural connectivity from in vivo all-optical perturbation experiments. In contrast to standard approaches that perform spike inference and analysis in two separate maximum-likelihood phases, our joint model is able to propagate uncertainty in spike inference to the inference of connectivity and vice versa. We use the framework of variational autoencoders to model spiking activity using discrete latent variables, low-dimensional latent common input, and sparse spike-and-slab generalized linear coupling between neurons. Additionally, we model two properties of the optogenetic perturbation: off-target photostimulation and photostimulation transients. Using this model, we were able to fit models on 30 minutes of data in just 10 minutes. We performed an all-optical circuit mapping experiment in primary visual cortex of the awake mouse, and use our approach to predict neural connectivity between excitatory neurons in layer 2/3. Predicted connectivity is sparse and consistent with known correlations with stimulus tuning, spontaneous correlation and distance.

     

     

    View Publication Page
    07/22/21 | Molecular characterization of projection neuron subtypes in the mouse olfactory bulb.
    Zeppilli S, Ackels T, Attey R, Klimpert N, Kimberly Ritola D, Boeing S, Crombach A, Schaefer AT, Fleischmann A
    eLife. 2021 Jul 22;10:. doi: 10.7554/eLife.65445

    Projection neurons (PNs) in the mammalian olfactory bulb (OB) receive input from the nose and project to diverse cortical and subcortical areas. Morphological and physiological studies have highlighted functional heterogeneity, yet no molecular markers have been described that delineate PN subtypes. Here, we used viral injections into olfactory cortex and fluorescent nucleus sorting to enrich PNs for high-throughput single nucleus and bulk RNA deep sequencing. Transcriptome analysis and RNA hybridization identified distinct mitral and tufted cell populations with characteristic transcription factor network topology, cell adhesion and excitability-related gene expression. Finally, we describe a new computational approach for integrating bulk and snRNA-seq data, and provide evidence that different mitral cell populations preferentially project to different target regions. Together, we have identified potential molecular and gene regulatory mechanisms underlying PN diversity and provide new molecular entry points into studying the diverse functional roles of mitral and tufted cell subtypes.

    View Publication Page
    11/30/21 | Multiplex Gene Tagging with CRISPR-Cas9 for Live-Cell Microscopy and Application to Study the Role of SARS-CoV-2 Proteins in Autophagy, Mitochondrial Dynamics, and Cell Growth.
    Perez-Leal O, Nixon-Abell J, Barrero CA, Gordon JC, Oesterling J, Rico MC
    The CRISPR Journal. 2021 Nov 30:. doi: 10.1089/crispr.2021.0041

    The lack of efficient tools to label multiple endogenous targets in cell lines without staining or fixation has limited our ability to track physiological and pathological changes in cells over time via live-cell studies. Here, we outline the FAST-HDR vector system to be used in combination with CRISPR-Cas9 to allow visual live-cell studies of up to three endogenous proteins within the same cell line. Our approach utilizes a novel set of advanced donor plasmids for homology-directed repair and a streamlined workflow optimized for microscopy-based cell screening to create genetically modified cell lines that do not require staining or fixation to accommodate microscopy-based studies. We validated this new methodology by developing two advanced cell lines with three fluorescent-labeled endogenous proteins that support high-content imaging without using antibodies or exogenous staining. We applied this technology to study seven severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2/COVID-19) viral proteins to understand better their effects on autophagy, mitochondrial dynamics, and cell growth. Using these two cell lines, we were able to identify the protein ORF3a successfully as a potent inhibitor of autophagy, inducer of mitochondrial relocalization, and a growth inhibitor, which highlights the effectiveness of live-cell studies using this technology.

    View Publication Page
    05/21/21 | Near-infrared catecholamine nanosensors for high spatiotemporal dopamine imaging.
    Yang SJ, Del Bonis-O'Donnell JT, Beyene AG, Landry MP
    Nature Protocols. 2021 May 21;16(6):3026-3048. doi: 10.1038/s41596-021-00530-4

    Dopamine neuromodulation of neural synapses is a process implicated in a number of critical brain functions and diseases. Development of protocols to visualize this dynamic neurochemical process is essential to understanding how dopamine modulates brain function. We have developed a non-genetically encoded, near-IR (nIR) catecholamine nanosensor (nIRCat) capable of identifying ~2-µm dopamine release hotspots in dorsal striatal brain slices. nIRCat is readily synthesized through sonication of single walled carbon nanotubes with DNA oligos, can be readily introduced into both genetically tractable and intractable organisms and is compatible with a number of dopamine receptor agonists and antagonists. Here we describe the synthesis, characterization and implementation of nIRCat in acute mouse brain slices. We demonstrate how nIRCat can be used to image electrically or optogenetically stimulated dopamine release, and how these procedures can be leveraged to study the effects of dopamine receptor pharmacology. In addition, we provide suggestions for building or adapting wide-field microscopy to be compatible with nIRCat nIR fluorescence imaging. We discuss strategies for analyzing nIR video data to identify dopamine release hotspots and quantify their kinetics. This protocol can be adapted and implemented for imaging other neuromodulators by using probes of this class and can be used in a broad range of species without genetic manipulation. The synthesis and characterization protocols for nIRCat take ~5 h, and the preparation and fluorescence imaging of live brain slices by using nIRCats require ~6 h.

    View Publication Page
    01/01/21 | Neural circuit mechanisms of sexual receptivity in Drosophila females.
    Wang K, Wang F, Forknall N, Yang T, Patrick C, Parekh R, Dickson BJ
    Nature. 2021 Jan 01;589(7843):577-81. doi: 10.1038/s41586-020-2972-7

    Choosing a mate is one of the most consequential decisions a female will make during her lifetime. A female fly signals her willingness to mate by opening her vaginal plates, allowing a courting male to copulate. Vaginal plate opening (VPO) occurs in response to the male courtship song and is dependent on the mating status of the female. How these exteroceptive (song) and interoceptive (mating status) inputs are integrated to regulate VPO remains unknown. Here we characterize the neural circuitry that implements mating decisions in the brain of female Drosophila melanogaster. We show that VPO is controlled by a pair of female-specific descending neurons (vpoDNs). The vpoDNs receive excitatory input from auditory neurons (vpoENs), which are tuned to specific features of the D. melanogaster song, and from pC1 neurons, which encode the mating status of the female. The song responses of vpoDNs, but not vpoENs, are attenuated upon mating, accounting for the reduced receptivity of mated females. This modulation is mediated by pC1 neurons. The vpoDNs thus directly integrate the external and internal signals that control the mating decisions of Drosophila females.

    View Publication Page
    01/04/21 | Neuromolecular and behavioral effects of ethanol deprivation in Drosophila
    Natalie M. D’Silva , Katie S. McCullar , Ashley M. Conard , Tyler Blackwater , Reza Azanchi , Ulrike Heberlein , Erica Larschan , Karla R. Kaun
    bioRxiv. 2021 Jan 04:. doi: https://doi.org/10.1101/2021.01.02.425101

    Alcohol use disorder (AUD) is characterized by loss of control in limiting alcohol intake. This may involve intermittent periods of abstinence followed by alcohol seeking and, consequently, relapse. However, little is understood of the molecular mechanisms underlying the impact of alcohol deprivation on behavior. Using a new Drosophila melanogaster repeated intermittent alcohol exposure model, we sought to identify how ethanol deprivation alters spontaneous behavior, determine the associated neural structures, and reveal correlated changes in brain gene expression. We found that repeated intermittent ethanol-odor exposures followed by ethanol-deprivation dynamically induces behaviors associated with a negative affect state. Although behavioral states broadly mapped to many brain regions, persistent changes in social behaviors mapped to the mushroom body and surrounding neuropil. This occurred concurrently with changes in expression of genes associated with sensory responses, neural plasticity, and immunity. Like social behaviors, immune response genes were upregulated following three-day repeated intermittent ethanol-odor exposures and persisted with one or two days of ethanol-deprivation, suggesting an enduring change in molecular function. Our study provides a framework for identifying how ethanol deprivation alters behavior with correlated underlying circuit and molecular changes.

    View Publication Page
    04/16/21 | Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings.
    Steinmetz NA, Aydın Ç, Lebedeva A, Okun M, Pachitariu M, Bauza M, Beau M, Bhagat J, Böhm C, Broux M, Chen S, Colonell J, Gardner RJ, Karsh B, Kloosterman F, Kostadinov D, Mora-Lopez C, O'Callaghan J, Park J, Putzeys J, Sauerbrei B, van Daal RJ, Vollan AZ, Wang S, Welkenhuysen M, Ye Z, Dudman JT, Dutta B, Hantman AW, Harris KD, Lee AK, Moser EI, O'Keefe J, Renart A, Svoboda K, Häusser M, Haesler S, Carandini M, Harris TD
    Science. 2021 Apr 16;372(6539):. doi: 10.1126/science.abf4588

    Measuring the dynamics of neural processing across time scales requires following the spiking of thousands of individual neurons over milliseconds and months. To address this need, we introduce the Neuropixels 2.0 probe together with newly designed analysis algorithms. The probe has more than 5000 sites and is miniaturized to facilitate chronic implants in small mammals and recording during unrestrained behavior. High-quality recordings over long time scales were reliably obtained in mice and rats in six laboratories. Improved site density and arrangement combined with newly created data processing methods enable automatic post hoc correction for brain movements, allowing recording from the same neurons for more than 2 months. These probes and algorithms enable stable recordings from thousands of sites during free behavior, even in small animals such as mice.

    View Publication Page
    12/06/21 | Non-preferred contrast responses in the Drosophila motion pathways reveal a receptive field structure that explains a common visual illusion.
    Gruntman E, Reimers P, Romani S, Reiser MB
    Current Biology. 2021 Dec 06;31(23):5286. doi: 10.1016/j.cub.2021.09.072

    Diverse sensory systems, from audition to thermosensation, feature a separation of inputs into ON (increments) and OFF (decrements) signals. In the Drosophila visual system, separate ON and OFF pathways compute the direction of motion, yet anatomical and functional studies have identified some crosstalk between these channels. We used this well-studied circuit to ask whether the motion computation depends on ON-OFF pathway crosstalk. Using whole-cell electrophysiology, we recorded visual responses of T4 (ON) and T5 (OFF) cells, mapped their composite ON-OFF receptive fields, and found that they share a similar spatiotemporal structure. We fit a biophysical model to these receptive fields that accurately predicts directionally selective T4 and T5 responses to both ON and OFF moving stimuli. This model also provides a detailed mechanistic explanation for the directional preference inversion in response to the prominent reverse-phi illusion. Finally, we used the steering responses of tethered flying flies to validate the model's predicted effects of varying stimulus parameters on the behavioral turning inversion.

    View Publication Page