Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

121 Janelia Publications

Showing 1-10 of 121 results
Your Criteria:
    04/22/24 | A Bayesian Solution to Count the Number of Molecules within a Diffraction Limited Spot
    Alexander Hillsley , Johannes Stein , Paul W. Tillberg , David L. Stern , Jan Funke
    bioRxiv. 2024 Apr 22:. doi: 10.1101/2024.04.18.590066

    We address the problem of inferring the number of independently blinking fluorescent light emitters, when only their combined intensity contributions can be observed at each timepoint. This problem occurs regularly in light microscopy of objects that are smaller than the diffraction limit, where one wishes to count the number of fluorescently labelled subunits. Our proposed solution directly models the photo-physics of the system, as well as the blinking kinetics of the fluorescent emitters as a fully differentiable hidden Markov model. Given a trace of intensity over time, our model jointly estimates the parameters of the intensity distribution per emitter, their blinking rates, as well as a posterior distribution of the total number of fluorescent emitters. We show that our model is consistently more accurate and increases the range of countable subunits by a factor of two compared to current state-of-the-art methods, which count based on autocorrelation and blinking frequency, Further-more, we demonstrate that our model can be used to investigate the effect of blinking kinetics on counting ability, and therefore can inform experimental conditions that will maximize counting accuracy.

    View Publication Page
    04/11/24 | A blue-shifted genetically encoded Ca2+ indicator with enhanced two-photon absorption
    Abhi Aggarwal , Smrithi Sunil , Imane Bendifallah , Michael Moon , Mikhail Drobizhev , Landon Zarowny , Jihong Zheng , Sheng-Yi Wu , Alexander W. Lohman , Alison G. Tebo , Valentina Emiliani , Kaspar Podgorski , Yi Shen , Robert E. Campbell
    bioRxiv. 2024 Apr 11:. doi: https://doi.org/10.1117/1.NPh.11.2.024207

    Significance: Genetically encoded calcium ion (Ca2+) indicators (GECIs) are powerful tools for monitoring intracellular Ca2+ concentration changes in living cells and model organisms. In particular, GECIs have found particular utility for monitoring the transient increase of Ca2+concentration that is associated with the neuronal action potential. However, the palette of highly optimized GECIs for imaging of neuronal activity remains relatively limited. Expanding the selection of available GECIs to include new colors and distinct photophysical properties could create new opportunities for in vitro and in vivo fluorescence imaging of neuronal activity. In particular, blue-shifted variants of GECIs are expected to have enhanced two-photon brightness, which would facilitate multiphoton microscopy.

    Aim: We describe the development and applications of T-GECO1-a high-performance blue-shifted GECI based on the Clavularia sp.-derived mTFP1.

    Approach: We use protein engineering and extensive directed evolution to develop T-GECO1. We characterize the purified protein and assess its performance in vitro using one-photon excitation in cultured rat hippocampal neurons, in vivo using one-photon excitation fiber photometry in mice, and ex vivo using two-photon Ca2+ imaging in hippocampal slices.

    Results: The Ca2+-bound state of T-GECO1 has an excitation peak maximum of 468 nm, an emission peak maximum of 500 nm, an extinction coefficient of 49,300M−1cm−1, a quantum yield of 0.83, and two-photon brightness approximately double that of EGFP. The Ca2+-dependent fluorescence increase is 15-fold, and the apparent Kd for Ca2+ is 82 nM. With two-photon excitation conditions at 850 nm, T-GECO1 consistently enabled the detection of action potentials with higher signal-to-noise (SNR) than a late generation GCaMP variant.

    Conclusions: T-GECO1 is a high-performance blue-shifted GECI that, under two-photon excitation conditions, provides advantages relative to late generation GCaMP variants.

    Keywords: blue-shifted fluorescence; genetically encoded calcium ion indicator; neuronal activity imaging; protein engineering; two-photon excitation.

    View Publication Page
    01/15/24 | A neural circuit architecture for rapid behavioral flexibility in goal-directed navigation
    Chuntao Dan , Brad K. Hulse , Ramya Kappagantula , Vivek Jayaraman , Ann M. Hermundstad
    bioRxiv. 2024 Jan 15:. doi: 10.1101/2021.08.18.456004

    Anchoring goals to spatial representations enables flexible navigation in both animals and artificial agents. However, using this strategy can be challenging in novel environments, when both spatial and goal representations must be acquired quickly and simultaneously. Here, we propose a framework for how Drosophila use their internal representation of head direction to build a goal heading representation upon selective thermal reinforcement. We show that flies in a well-established operant visual learning paradigm use stochastically generated fixations and directed saccades to express heading preferences, and that compass neurons, which represent flies’ head direction, are required to modify these preferences based on reinforcement. We describe how flies’ ability to quickly map their surroundings and adapt their behavior to the rules of their environment may rest on a behavioral policy whose parameters are flexible but whose form and dependence on head direction and goal representations are genetically encoded in the modular structure of their circuits. Using a symmetric visual setting, which predictably alters the dynamics of the head direction system, enabled us to describe how interactions between the evolving representations of head direction and goal impact behavior. We show how a policy tethered to these two internal representations can facilitate rapid learning of new goal headings, drive more exploitative behavior about stronger goal headings, and ensure that separate learning processes involved in mapping the environment and forming goals within that environment remain consistent with one another. Many of the mechanisms we outline may be broadly relevant for rapidly adaptive behavior driven by internal representations.

    View Publication Page
    02/16/24 | A ratiometric ER calcium sensor for quantitative comparisons across cell types and subcellular regions.
    Ryan J. Farrell , Kirsten G. Bredvik , Michael B. Hoppa , S. Thomas Hennigan , Timothy A. Brown , Timothy A. Ryan
    bioRxiv. 2024 Feb 16:. doi: 10.1101/2024.02.15.580492

    The endoplasmic reticulum (ER) is an important regulator of Ca2+ in cells and dysregulation of ER calcium homeostasis can lead to numerous pathologies. Understanding how various pharmacological and genetic perturbations of ER Ca2+ homeostasis impacts cellular physiology would likely be facilitated by more quantitative measurements of ER Ca2+ levels that allow easier comparisons across conditions. Here, we developed a ratiometric version of our original ER-GCaMP probe that allows for more quantitative comparisons of the concentration of Ca2+ in the ER across cell types and sub-cellular compartments. Using this approach we show that the resting concentration of ER Ca2+ in primary dissociated neurons is substantially lower than that in measured in embryonic fibroblasts.

    View Publication Page
    02/24/24 | A series of spontaneously blinking dyes for super-resolution microscopy
    Katie L. Holland , Sarah E. Plutkis , Timothy A. Daugird , Abhishek Sau , Jonathan B. Grimm , Brian P. English , Qinsi Zheng , Sandeep Dave , Fariha Rahman , Liangqi Xie , Peng Dong , Ariana N. Tkachuk , Timothy A. Brown , Robert H. Singer , Zhe Liu , Catherine G. Galbraith , Siegfried M. Musser , Wesley R. Legant , Luke D. Lavis
    bioRxiv. 2024 Feb 24:. doi: 10.1101/2024.02.23.581625

    Spontaneously blinking fluorophores permit the detection and localization of individual molecules without reducing buffers or caging groups, thus simplifying single-molecule localization microscopy (SMLM). The intrinsic blinking properties of such dyes are dictated by molecular structure and modulated by environment, which can limit utility. We report a series of tuned spontaneously blinking dyes with duty cycles that span two orders of magnitude, allowing facile SMLM in cells and dense biomolecular structures.

    View Publication Page
    01/10/24 | A split-GAL4 driver line resource for Drosophila CNS cell types
    Geoffrey W Meissner , Allison Vannan , Jennifer Jeter , Kari Close , Gina M DePasquale , Zachary Dorman , Kaitlyn Forster , Jaye Anne Beringer , Theresa V Gibney , Joanna H Hausenfluck , Yisheng He , Kristin Henderson , Lauren Johnson , Rebecca M Johnston , Gudrun Ihrke , Nirmala Iyer , Rachel Lazarus , Kelley Lee , Hsing-Hsi Li , Hua-Peng Liaw , Brian Melton , Scott Miller , Reeham Motaher , Alexandra Novak , Omotara Ogundeyi , Alyson Petruncio , Jacquelyn Price , Sophia Protopapas , Susana Tae , Jennifer Taylor , Rebecca Vorimo , Brianna Yarbrough , Kevin Xiankun Zeng , Christopher T Zugates , Heather Dionne , Claire Angstadt , Kelly Ashley , Amanda Cavallaro , Tam Dang , Guillermo A Gonzalez III , Karen L Hibbard , Cuizhen Huang , Jui-Chun Kao , Todd Laverty , Monti Mercer , Brenda Perez , Scarlett Pitts , Danielle Ruiz , Viruthika Vallanadu , Grace Zhiyu Zheng , Cristian Goina , Hideo Otsuna , Konrad Rokicki , Robert R Svirskas , Han SJ Cheong , Michael-John Dolan , Erica Ehrhardt , Kai Feng , Basel El Galfi , Jens Goldammer , Stephen J Huston , Nan Hu , Masayoshi Ito , Claire McKellar , Ryo Minegishi , Shigehiro Namiki , Aljoscha Nern , Catherine E Schretter , Gabriella R Sterne , Lalanti Venkatasubramanian , Kaiyu Wang , Tanya Wolff , Ming Wu , Reed George , Oz Malkesman , Yoshinori Aso , Gwyneth M Card , Barry J Dickson , Wyatt Korff , Kei Ito , James W Truman , Marta Zlatic , Gerald M Rubin , FlyLight Project Team
    bioRxiv. 2024 Jan 10:. doi: 10.1101/2024.01.09.574419

    Techniques that enable precise manipulations of subsets of neurons in the fly central nervous system have greatly facilitated our understanding of the neural basis of behavior. Split-GAL4 driver lines allow specific targeting of cell types in Drosophila melanogaster and other species. We describe here a collection of 3060 lines targeting a range of cell types in the adult Drosophila central nervous system and 1373 lines characterized in third-instar larvae. These tools enable functional, transcriptomic, and proteomic studies based on precise anatomical targeting. NeuronBridge and other search tools relate light microscopy images of these split-GAL4 lines to connectomes reconstructed from electron microscopy images. The collections are the result of screening over 77,000 split hemidriver combinations. In addition to images and fly stocks for these well-characterized lines, we make available 300,000 new 3D images of other split-GAL4 lines.

    View Publication Page
    05/01/24 | A survival-critical role for Drosophila giant interneurons during predation
    Cynthia M. Chai , Carmen Morrow , Dhyey D. Parikh , Catherine R. von Reyn , Anthony Leonardo , Gwyneth M Card
    bioRxiv. 2024 May 1:. doi: 10.1101/2024.04.30.591368

    Large axon-diameter descending neurons are metabolically costly but transmit information rapidly from sensory neurons in the brain to motor neurons in the nerve cord. They have thus endured as a common feature of escape circuits in many animal species where speed is paramount. Though often considered isolated command neurons triggering fast-reaction-time, all-or-none escape responses, giant neurons are just one of multiple parallel pathways enabling selection between behavioral alternatives. Such degeneracy among escape circuits makes it unclear if and how giant neurons benefit prey fitness. Here we competed Drosophila melanogaster flies with genetically-silenced Giant Fibers (GFs) against flies with functional GFs in an arena with wild-caught damselfly predators and find that GF silencing decreases prey survival. Kinematic analysis of damselfly attack trajectories shows that decreased prey survival fitness results from GF-silenced flies failing to escape during predator attack speeds and approach distances that would normally elicit successful escapes. When challenged with a virtual looming predator, fly GFs promote survival by enforcing selection of a short-duration takeoff sequence as opposed to reducing reaction time. Our findings support a role for the GFs in promoting prey survival by influencing action selection as a means to enhance escape performance during realistically complex predation scenarios.

    View Publication Page
    04/06/24 | A tunable and versatile chemogenetic near infrared fluorescent reporter
    Lina El Hajji , Benjamin Bunel , Octave Joliot , Chenge Li , Alison G. Tebo , Christine Rampon , Michel Volovitch , Evelyne Fischer , Nicolas Pietrancosta , Franck Perez , Xavier Morin , Sophie Vriz , Arnaud Gautier
    bioRxiv. 2024 Apr 6:. doi: 10.1101/2024.04.05.588310

    Near-infrared (NIR) fluorescent reporters provide additional colors for highly multiplexed imaging of cells and organisms, and enable imaging with less toxic light and higher contrast and depth. Here, we present the engineering of nirFAST, a small tunable chemogenetic NIR fluorescent reporter that is brighter than top-performing NIR fluorescent proteins in cultured mammalian cells. nirFAST is a small genetically encoded protein of 14 kDa that binds and stabilizes the fluorescent state of synthetic, highly cell-permeant, fluorogenic chromophores (so-called fluorogens) that are otherwise dark when free. Engineered to emit NIR light, nirFAST can also emit far-red or red lights through change of chromophore. nirFAST allows the imaging of proteins in live cultured mammalian cells, chicken embryo tissues and zebrafish larvae. Its near infrared fluorescence provides an additional color for high spectral multiplexing. We showed that nirFAST is well-suited for stimulated emission depletion (STED) nanoscopy, allowing the efficient imaging of proteins with subdiffraction resolution in live cells. nirFAST enabled the design of a chemogenetic green-NIR fluorescent ubiquitination-based cell cycle indicator (FUCCI) for the monitoring of the different phases of the cell cycle. Finally, bisection of nirFAST allowed the design of a fluorogenic chemically induced dimerization technology with NIR fluorescence readout, enabling the control and visualization of protein proximity.

    View Publication Page
    Ji Lab
    05/05/24 | Adaptive optical third-harmonic generation microscopy for in vivo imaging of tissues
    Cristina Rodríguez , Daisong Pan , Ryan G. Natan , Manuel A. Mohr , Max Miao , Xiaoke Chen , Trent R. Northen , John P. Vogel , Na Ji
    bioRxiv. 2024 May 05:. doi: 10.1101/2024.05.02.592275

    Third-harmonic generation microscopy is a powerful label-free nonlinear imaging technique, providing essential information about structural characteristics of cells and tissues without requiring external labelling agents. In this work, we integrated a recently developed compact adaptive optics module into a third-harmonic generation microscope, to measure and correct for optical aberrations in complex tissues. Taking advantage of the high sensitivity of the third-harmonic generation process to material interfaces and thin membranes, along with the 1,300-nm excitation wavelength used here, our adaptive optical third-harmonic generation microscope enabled high-resolution in vivo imaging within highly scattering biological model systems. Examples include imaging of myelinated axons and vascular structures within the mouse spinal cord and deep cortical layers of the mouse brain, along with imaging of key anatomical features in the roots of the model plant Brachypodium distachyon. In all instances, aberration correction led to significant enhancements in image quality.

    View Publication Page
    03/27/24 | Altruistic feeding and cell-cell signaling during bacterial differentiation actively enhance phenotypic heterogeneity
    Taylor B. Updegrove , Thomas Delerue , V. Anantharaman , Hyomoon Cho , Carissa Chan , Thomas Nipper , Hyoyoung Choo-Wosoba , Lisa Jenkins , Lixia Zhang , Yijun Su , Hari Shroff , Jiji Chen , Carole Bewley , L. Aravind , Kumaran S Ramamurthi
    bioRxiv. 2024 Mar 27:. doi: 10.1101/2024.03.27.587046

    Starvation triggers bacterial spore formation, a committed differentiation program that transforms a vegetative cell into a dormant spore. Cells in a population enter sporulation non-uniformly to secure against the possibility that favorable growth conditions, which puts sporulation-committed cells at a disadvantage, may resume. This heterogeneous behavior is initiated by a passive mechanism: stochastic activation of a master transcriptional regulator. Here, we identify a cell-cell communication pathway that actively promotes phenotypic heterogeneity, wherein Bacillus subtilis cells that start sporulating early utilize a calcineurin-like phosphoesterase to release glycerol, which simultaneously acts as a signaling molecule and a nutrient to delay non-sporulating cells from entering sporulation. This produced a more diverse population that was better poised to exploit a sudden influx of nutrients compared to those generating heterogeneity via stochastic gene expression alone. Although conflict systems are prevalent among microbes, genetically encoded cooperative behavior in unicellular organisms can evidently also boost inclusive fitness.

    View Publication Page