Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

general_search_page-panel_pane_1 | views_panes

13 Janelia Publications

Showing 1-10 of 13 results
Your Criteria:
    10/19/16 | A designer AAV variant permits efficient retrograde access to projection neurons.
    Tervo DG, Hwang B, Viswanathan S, Gaj T, Lavzin M, Ritola KD, Lindo S, Michael S, Kuleshova E, Ojala D, Huang C, Gerfen CR, Schiller J, Dudman JT, Hantman AW, Looger LL, Schaffer DV, Karpova AY
    Neuron. 2016 Oct 19;92(2):372-82. doi: 10.1016/j.neuron.2016.09.021

    Efficient retrograde access to projection neurons for the delivery of sensors and effectors constitutes an important and enabling capability for neural circuit dissection. Such an approach would also be useful for gene therapy, including the treatment of neurodegenerative disorders characterized by pathological spread through functionally connected and highly distributed networks. Viral vectors, in particular, are powerful gene delivery vehicles for the nervous system, but all available tools suffer from inefficient retrograde transport or limited clinical potential. To address this need, we applied in vivo directed evolution to engineer potent retrograde functionality into the capsid of adeno-associated virus (AAV), a vector that has shown promise in neuroscience research and the clinic. A newly evolved variant, rAAV2-retro, permits robust retrograde access to projection neurons with efficiency comparable to classical synthetic retrograde tracers and enables sufficient sensor/effector expression for functional circuit interrogation and in vivo genome editing in targeted neuronal populations. VIDEO ABSTRACT.

    View Publication Page
    10/14/13 | A neuron-based screening platform for optimizing genetically-encoded calcium indicators.
    Wardill TJ, Chen T, Schreiter ER, Hasseman JP, Tsegaye G, Fosque BF, Behnam R, Shields BC, Ramirez M, Kimmel BE, Kerr RA, Jayaraman V, Looger LL, Svoboda K, Kim DS
    PLoS One. 2013;8:e77728. doi: 10.1371/journal.pone.0077728

    Fluorescent protein-based sensors for detecting neuronal activity have been developed largely based on non-neuronal screening systems. However, the dynamics of neuronal state variables (e.g., voltage, calcium, etc.) are typically very rapid compared to those of non-excitable cells. We developed an electrical stimulation and fluorescence imaging platform based on dissociated rat primary neuronal cultures. We describe its use in testing genetically-encoded calcium indicators (GECIs). Efficient neuronal GECI expression was achieved using lentiviruses containing a neuronal-selective gene promoter. Action potentials (APs) and thus neuronal calcium levels were quantitatively controlled by electrical field stimulation, and fluorescence images were recorded. Images were segmented to extract fluorescence signals corresponding to individual GECI-expressing neurons, which improved sensitivity over full-field measurements. We demonstrate the superiority of screening GECIs in neurons compared with solution measurements. Neuronal screening was useful for efficient identification of variants with both improved response kinetics and high signal amplitudes. This platform can be used to screen many types of sensors with cellular resolution under realistic conditions where neuronal state variables are in relevant ranges with respect to timing and amplitude.

    View Publication Page
    11/22/23 | ACC neural ensemble dynamics are structured by strategy prevalence
    Mikhail Proskurin , Maxim Manakov , Alla Y. Karpova
    eLife. 2023 Nov 22:. doi: 10.7554/eLife.84897

    Medial frontal cortical areas are thought to play a critical role in the brain's ability to flexibly deploy strategies that are effective in complex settings. Still, the specific circuit computations that underpin this foundational aspect of intelligence remain unclear. Here, by examining neural ensemble activity in rats that sample different strategies in a self-guided search for latent task structure, we demonstrate a robust tracking of individual strategy prevalence in the anterior cingulate cortex (ACC), especially in an area homologous to primate area 32D. Prevalence encoding in the ACC is wide-scale, independent of reward delivery, and persists through a substantial ensemble reorganization that tags ACC representations with contextual content. Our findings argue that ACC ensemble dynamics is structured by a summary statistic of recent behavioral choices, raising the possibility that ACC plays a role in estimating - through statistical learning - which actions promote the occurrence of events in the environment.

    View Publication Page
    09/25/14 | Behavioral variability through stochastic choice and its gating by anterior cingulate cortex.
    Tervo DG, Proskurin M, Manakov M, Kabra M, Vollmer A, Branson K, Karpova AY
    Cell. 2014 Sep 25;159(1):21-32. doi: 10.1016/j.cell.2014.08.037

    Behavioral choices that ignore prior experience promote exploration and unpredictability but are seemingly at odds with the brain's tendency to use experience to optimize behavioral choice. Indeed, when faced with virtual competitors, primates resort to strategic counterprediction rather than to stochastic choice. Here, we show that rats also use history- and model-based strategies when faced with similar competitors but can switch to a "stochastic" mode when challenged with a competitor that they cannot defeat by counterprediction. In this mode, outcomes associated with an animal's actions are ignored, and normal engagement of anterior cingulate cortex (ACC) is suppressed. Using circuit perturbations in transgenic rats, we demonstrate that switching between strategic and stochastic behavioral modes is controlled by locus coeruleus input into ACC. Our findings suggest that, under conditions of uncertainty about environmental rules, changes in noradrenergic input alter ACC output and prevent erroneous beliefs from guiding decisions, thus enabling behavioral variation.

    View Publication Page
    09/10/15 | Dopamine is required for the neural representation and control of movement vigor.
    Panigrahi B, Martin KA, Li Y, Graves AR, Vollmer A, Olson L, Mensh BD, Karpova AY, Dudman JT
    Cell. 2015 Sep 10;162(6):1418-30. doi: 10.1016/j.cell.2015.08.014

    Progressive depletion of midbrain dopamine neurons (PDD) is associated with deficits in the initiation, speed, and fluidity of voluntary movement. Models of basal ganglia function focus on initiation deficits; however, it is unclear how they account for deficits in the speed or amplitude of movement (vigor). Using an effort-based operant conditioning task for head-fixed mice, we discovered distinct functional classes of neurons in the dorsal striatum that represent movement vigor. Mice with PDD exhibited a progressive reduction in vigor, along with a selective impairment of its neural representation in striatum. Restoration of dopaminergic tone with a synthetic precursor ameliorated deficits in movement vigor and its neural representation, while suppression of striatal activity during movement was sufficient to reduce vigor. Thus, dopaminergic input to the dorsal striatum is indispensable for the emergence of striatal activity that mediates adaptive changes in movement vigor. These results suggest refined intervention strategies for Parkinson’s disease.

    View Publication Page
    03/14/16 | Editorial overview: Neurobiology of cognitive behavior: Complexity of neural computation and cognition.
    Karpova A, Kiani R
    Current Opinion in Neurobiology. 2016 Mar 14;37:v-viii. doi: 10.1016/j.conb.2016.03.003
    10/16/18 | Expanding the optogenetics toolkit by topological inversion of rhodopsins.
    Brown J, Behnam R, Coddington L, Tervo DG, Martin K, Proskurin M, Kuleshova E, Park J, Phillips J, Bergs AC, Gottschalk A, Dudman JT, Karpova AY
    Cell. 2018 Oct 16;175(4):1131-40. doi: 10.1016/j.cell.2018.09.026

    Targeted manipulation of activity in specific populations of neurons is important for investigating the neural circuit basis of behavior. Optogenetic approaches using light-sensitive microbial rhodopsins have permitted manipulations to reach a level of temporal precision that is enabling functional circuit dissection. As demand for more precise perturbations to serve specific experimental goals increases, a palette of opsins with diverse selectivity, kinetics, and spectral properties will be needed. Here, we introduce a novel approach of "topological engineering"-inversion of opsins in the plasma membrane-and demonstrate that it can produce variants with unique functional properties of interest for circuit neuroscience. In one striking example, inversion of a Channelrhodopsin variant converted it from a potent activator into a fast-acting inhibitor that operates as a cation pump. Our findings argue that membrane topology provides a useful orthogonal dimension of protein engineering that immediately permits as much as a doubling of the available toolkit.

    View Publication Page
    10/22/18 | Imaging cortical dynamics in GCaMP transgenic rats with a head-mounted widefield macroscope.
    Scott BB, Thiberge SY, Guo C, Tervo DG, Brody CD, Karpova AY, Tank DW
    Neuron. 2018 Oct 22:. doi: 10.1016/j.neuron.2018.09.050

    Widefield imaging of calcium dynamics is an emerging method for mapping regional neural activity but is currently limited to restrained animals. Here we describe cScope, a head-mounted widefield macroscope developed to image large-scale cortical dynamics in rats during natural behavior. cScope provides a 7.8 × 4 mm field of view and dual illumination paths for both fluorescence and hemodynamic correction and can be fabricated at low cost using readily attainable components. We also report the development of Thy-1 transgenic rat strains with widespread neuronal expression of the calcium indicator GCaMP6f. We combined these two technologies to image large-scale calcium dynamics in the dorsal neocortex during a visual evidence accumulation task. Quantitative analysis of task-related dynamics revealed multiple regions having neural signals that encode behavioral choice and sensory evidence. Our results provide a new transgenic resource for calcium imaging in rats and extend the domain of head-mounted microscopes to larger-scale cortical dynamics.

    View Publication Page
    05/16/24 | Magnetic voluntary head-fixation in transgenic rats enables lifetime imaging of hippocampal neurons
    P. D. Rich , S. Y. Thiberge , B. B. Scott , C. Guo , D. G. Tervo , C. D. Brody , A. Y. Karpova , N. D. Daw , D. W. Tank
    Nat. Commun.. 2024 May 16:. doi: 10.1038/s41467-024-48505-9

    The precise neural mechanisms within the brain that contribute to the remarkable lifetime persistence of memory remain unknown. Existing techniques to record neurons in animals are either unsuitable for longitudinal recording from the same cells or make it difficult for animals to express their full naturalistic behavioral repertoire. We present a magnetic voluntary head-fixation system that provides stable optical access to the brain during complex behavior. Compared to previous systems that used mechanical restraint, there are no moving parts and animals can engage and disengage entirely at will. This system is failsafe, easy for animals to use and reliable enough to allow long-term experiments to be routinely performed. Together with a novel two-photon fluorescence collection scheme that increases two-photon signal and a transgenic rat line that stably expresses the calcium sensor GCaMP6f in dorsal CA1, we are able to track and record activity from the same hippocampal neurons, during behavior, over a large fraction of animals’ lives.

    View Publication Page
    10/05/12 | Network resets in medial prefrontal cortex mark the onset of behavioral uncertainty.
    Karlsson MP, Tervo DG, Karpova AY
    Science. 2012 Oct 5;338:135-9. doi: 10.1126/science.1226518

    Regions within the prefrontal cortex are thought to process beliefs about the world, but little is known about the circuit dynamics underlying the formation and modification of these beliefs. Using a task that permits dissociation between the activity encoding an animal’s internal state and that encoding aspects of behavior, we found that transient increases in the volatility of activity in the rat medial prefrontal cortex accompany periods when an animal’s belief is modified after an environmental change. Activity across the majority of sampled neurons underwent marked, abrupt, and coordinated changes when prior belief was abandoned in favor of exploration of alternative strategies. These dynamics reflect network switches to a state of instability, which diminishes over the period of exploration as new stable representations are formed.

    View Publication Page